
FEN-EDEBİYAT FAKÜLTESİ
Matematik
MATH 485 | Ders Tanıtım Bilgileri
Dersin Adı |
Veri Analizi
|
Kodu
|
Yarıyıl
|
Teori
(saat/hafta) |
Uygulama/Lab
(saat/hafta) |
Yerel Kredi
|
AKTS
|
MATH 485
|
Güz/Bahar
|
3
|
0
|
3
|
8
|
Ön-Koşul(lar) |
Yok
|
|||||
Dersin Dili |
İngilizce
|
|||||
Dersin Türü |
Seçmeli
|
|||||
Dersin Düzeyi |
Lisans
|
|||||
Dersin Veriliş Şekli | Yüz Yüze | |||||
Dersin Öğretim Yöntem ve Teknikleri | Deney / Laboratuvar / Atölye uygulamaAnlatım / Sunum | |||||
Dersin Koordinatörü | ||||||
Öğretim Eleman(lar)ı | ||||||
Yardımcı(ları) |
Dersin Amacı | Bu dersin temel amacı, veri analizi yöntemleri hakkında temel bilgiler vermek ve bu yöntemleri istatistiksel yazılım programları yardımı ile kullanabilmektir. Ders kapsamında temel istatistiksel yaklaşımların yanında modelleme üzerinde durulması hedeflenmektedir. |
Öğrenme Çıktıları |
Bu dersi başarıyla tamamlayabilen öğrenciler;
|
Ders Tanımı | Dersin temel konuları: verileri tanımlayabilmek için grafiksel ve sayısal yöntemler, istatistiksel modellerin kullanılması, model varsayımlarını istatistiksel yöntemler kullanarak kontrol etmek, hipotezleri test edebilmektir. Veri madenciliğinin temel kavramları. |
|
Temel Ders |
X
|
Uzmanlık/Alan Dersleri | ||
Destek Dersleri | ||
İletişim ve Yönetim Becerileri Dersleri | ||
Aktarılabilir Beceri Dersleri |
HAFTALIK KONULAR VE İLGİLİ ÖN HAZIRLIK ÇALIŞMALARI
Hafta | Konular | Ön Hazırlık |
1 | Veri çözümlemeye giriş, veri bilimi veri bilimcisi, veri bilimcinin araç kutusu, SPSS, R ortamına giriş (Installation, Editors) | R for Data Science, H. Wickham, G. Grolemund, (Ch-1, Ch-2), Introductory Statistics with R, P. Dalgaard (Ch-1) |
2 | R’da veri yapıları, hazır fonksiyonlar, R paketleri | Introductory Statistics with R, P. Dalgaard (Ch-1) |
3 | Rassal veri, yoğunluk ve dağılım fonksiyonları, veri alış/verişi, veri manipülasyonu | Introductory Statistics with R, P. Dalgaard (Ch-3) |
4 | Kontrol yapıları, koşullu ifadeler | Introductory Statistics with R, P. Dalgaard (Ch-1.2) |
5 | Veri tanımlamada sayısal yöntemler, değişkenler arasındaki ilişki | Introductory Statistics with R, P. Dalgaard (Ch-4) |
6 | Veri görselleştirme, veri tanımlamada görsel yöntemler R’da temel grafik sistemi ve temel grafikler | Introductory Statistics with R, P. Dalgaard (Ch-4.2) |
7 | R’da ileri düzey grafikler-1, tidyverse yazım kuralları, R’da ileri düzey grafikler-2, ggplot2 | R for Data Science, H. Wickham, G. Grolemund, (Ch-3) |
8 | Ara Sınav | |
9 | Hipotez testi tek örneklem testleri | Introductory Statistics with R, P. Dalgaard (Ch-5) |
10 | Hipotez testi İki örneklem testleri | Introductory Statistics with R, P. Dalgaard (Ch-5) |
11 | Varsayımların kontrolü, uyum iyiliği tesleri | Introductory Statistics with R, P. Dalgaard (Ch-5) |
12 | Basit Doğrusal regresyon ve korelasyon | Introductory Statistics with R, P. Dalgaard (Ch-6) |
13 | Dinamik raporlama | R for Data Science, H. Wickham, G. Grolemund, (Ch-27) |
14 | Veri madenciliği, İstatistiksel öğrenmenin temel kavramları, denetimli öğrenme, denetimsiz öğrenme | R for Data Science, H. Wickham, G. Grolemund, (Ch-22) |
15 | Dönemin gözden geçirilmesi | |
16 | Final Sınavı |
Ders Kitabı | 1- Introductory Statistics with R, P. Dalgaard, Springer, 2008. ISBN-13: 978-0-387-79054-1. (https://link.springer.com/book/10.1007/978-0-387-79054-1#toc)
2- R for Data Science, H. Wickham, G. Grolemund, 978-1491910399. (https://r4ds.had.co.nz |
Önerilen Okumalar/Materyaller | 1- R in Action: Data Analysis and Graphics with R. 2nd Ed., R. Kabacoff, 2015. 978-1617291388.
2- Practical Data Science with R, N. Zumel and J. Mount, Manning Publications, 2014. 9781617291562. |
DEĞERLENDİRME ÖLÇÜTLERİ
Yarıyıl Aktiviteleri | Sayı | Katkı Payı % |
Katılım | ||
Laboratuvar / Uygulama | ||
Arazi Çalışması | ||
Küçük Sınav / Stüdyo Kritiği | ||
Portfolyo | ||
Ödev | ||
Sunum / Jüri Önünde Sunum |
1
|
10
|
Proje |
1
|
20
|
Seminer/Çalıştay | ||
Sözlü Sınav | ||
Ara Sınav |
1
|
30
|
Final Sınavı |
1
|
40
|
Toplam |
Yarıyıl İçi Çalışmalarının Başarı Notuna Katkısı |
3
|
60
|
Yarıyıl Sonu Çalışmalarının Başarı Notuna Katkısı |
1
|
40
|
Toplam |
AKTS / İŞ YÜKÜ TABLOSU
Yarıyıl Aktiviteleri | Sayı | Süre (Saat) | İş Yükü |
---|---|---|---|
Teorik Ders Saati (Sınav haftası dahildir: 16 x teorik ders saati) |
16
|
3
|
48
|
Laboratuvar / Uygulama Ders Saati (Sınav haftası dahildir. 16 x uygulama/lab ders saati) |
16
|
0
|
|
Sınıf Dışı Ders Çalışması |
14
|
3
|
42
|
Arazi Çalışması |
0
|
||
Küçük Sınav / Stüdyo Kritiği |
0
|
||
Portfolyo |
0
|
||
Ödev |
0
|
||
Sunum / Jüri Önünde Sunum |
1
|
25
|
25
|
Proje |
1
|
40
|
40
|
Seminer/Çalıştay |
0
|
||
Sözlü Sınav |
0
|
||
Ara Sınavlar |
1
|
40
|
40
|
Final Sınavı |
1
|
45
|
45
|
Toplam |
240
|
DERSİN ÖĞRENME ÇIKTILARININ PROGRAM YETERLİLİKLERİ İLE İLİŞKİSİ
#
|
Program Yeterlilikleri / Çıktıları |
* Katkı Düzeyi
|
||||
1
|
2
|
3
|
4
|
5
|
||
1 | Temel matematik, uygulamalı matematik veya istatistik kuramlarına ve uygulamalarına hâkim olur. |
X | ||||
2 | Matematik veya istatistik alanlarında edindiği ileri düzey bilgi ve becerilerini kullanarak verileri yorumlar, sorunları tanımlar, araştırmalara ve kanıtlara dayalı çözüm önerileri geliştirir. |
X | ||||
3 | Disiplinler arası yaklaşımla, matematik veya istatistiği gerçek yaşamda uygular ve kendi potansiyelini keşfeder. |
X | ||||
4 | Matematik veya İstatistik alanında edindiği ileri düzeyde bilgi ve becerilerini eleştirel bir yaklaşımla değerlendirir. |
|||||
5 | Kuramsal ve teknik bilgilerini detaylı olarak uzman olan veya olmayan kişilere rahatça aktarır. |
|||||
6 | Matematik veya istatistik alanlarında bireysel veya ekip olarak bir çalışmayı sürdürür, bağımsız çalışmanın ilgili tüm aşamalarında etkili olur, karar verme sürecine katılır, zamanı etkili kullanarak gerekli planlamayı yapar. |
|||||
7 | Matematik veya istatistik alanlarında yaygın olarak kullanılan yazılımlara aşina olur ve Avrupa Bilgisayar Kullanma Lisansı İleri Düzeyindeki en az bir programı etkin şekilde kullanır. |
X | ||||
8 | Dahil olduğu projelerin tüm aşamalarında toplumsal, bilimsel ve etik değerlere uygun hareket eder, toplumsal duyarlılık çerçevesinde proje geliştirip uygular. |
|||||
9 | Evrensel anlamda birikimli ve duyarlı olarak tüm süreçleri etkin şekilde değerlendirir ve kalite yönetimi konusunda yeterli bilince sahip olur. |
|||||
10 | Soyut düşünce yapısına hâkim olarak, somut olayları bağlar ve çözüm üretir, veri toplayarak bilimsel yöntemlerle sonuçları inceler ve yorumlar. |
|||||
11 | Bir yabancı dili kullanarak Matematik veya İstatistik ile ilgili bilgi toplar ve meslektaşları ile iletişim kurar. |
|||||
12 | İkinci yabancı dili orta düzeyde kullanır. |
|||||
13 | İnsanlık tarihi boyunca oluşan bilgi birikimini uzmanlık alanıyla ilişkilendirir. |
*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest
HABER |TÜM HABERLER

48 Saatlik ‘Matematik’ Maratonu
Milli Eğitim Bakanlığı’nın matematik derslerini keyifli hale getirerek öğrenmeyi kolaylaştırmak hedefiyle başlattığı ‘Matematik Seferberliği’ne İzmir’den destek geldi.

İEÜ’lü profesöre Yunanistan’dan büyük onur
Matematik ve istatistik alanında Türkiye’nin önde gelen isimlerinden biri olan İzmir Ekonomi Üniversitesi (İEÜ) Fen-Edebiyat Fakültesi Dekanı Prof. Dr. İsmihan Bayramoğlu, Yunanistan

‘Dünya Matematik ve Pi Günü’ne özel etkinlik
İzmir Ekonomi Üniversitesi (İEÜ) Matematik Bölümü, farklı üniversitelerden akademisyen ve öğrencilerin katılımıyla online olarak “Dünya Matematik ve Pi Günü” kutlaması gerçekleştirdi.