
FEN-EDEBİYAT FAKÜLTESİ
Matematik
MATH 472 | Ders Tanıtım Bilgileri
Dersin Adı |
Hesaplamalı Değişmeli Cebire Giriş
|
Kodu
|
Yarıyıl
|
Teori
(saat/hafta) |
Uygulama/Lab
(saat/hafta) |
Yerel Kredi
|
AKTS
|
MATH 472
|
Güz/Bahar
|
3
|
0
|
3
|
6
|
Ön-Koşul(lar) |
Yok
|
|||||
Dersin Dili |
İngilizce
|
|||||
Dersin Türü |
Seçmeli
|
|||||
Dersin Düzeyi |
Lisans
|
|||||
Dersin Veriliş Şekli | - | |||||
Dersin Öğretim Yöntem ve Teknikleri | - | |||||
Dersin Koordinatörü | - | |||||
Öğretim Eleman(lar)ı | ||||||
Yardımcı(ları) |
Dersin Amacı | Bu dersin temel amacı, hızla gelişmekte olan hesaplamalı değişmeli cebir konularına giriş yapmak ve temel bilgileri vermektir. Bu derste, çok değişkenli polinom halkaları üzerinde temel hesaplama teknikleri ve algoritmaları gösterilecektir. |
Öğrenme Çıktıları |
Bu dersi başarıyla tamamlayabilen öğrenciler;
|
Ders Tanımı | Bu derste tekterim sıralamaları, Gröbner baz hesapları, değişken eliminasyonu, boyut, çözümleme, Zariski topolojisi ve cebir-geometri geçişi, afin ve izdüşüm varyeteleri ve değişmezlik teorisi konuları ele alınacaktır. |
|
Temel Ders | |
Uzmanlık/Alan Dersleri |
X
|
|
Destek Dersleri | ||
İletişim ve Yönetim Becerileri Dersleri | ||
Aktarılabilir Beceri Dersleri |
HAFTALIK KONULAR VE İLGİLİ ÖN HAZIRLIK ÇALIŞMALARI
Hafta | Konular | Ön Hazırlık |
1 | Geometri, cebir ve algoritmalar | "Ideals, Varietiesi and Algorithms" by D. Cox, J. Little, D. O'Shea, Springer UTM, 3rd Edition, 2007. ISBN: 978-0-387-35651-8 Chapter 1, pp1-47 |
2 | Tekterim sıralamaları ve Hilbert baz teoremi | "Ideals, Varietiesi and Algorithms" by D. Cox, J. Little, D. O'Shea, Springer UTM, 3rd Edition, 2007. ISBN: 978-0-387-35651-8 Chapter 2, pp 49-81 |
3 | Gröbner bazları | "Ideals, Varietiesi and Algorithms" by D. Cox, J. Little, D. O'Shea, Springer UTM, 3rd Edition, 2007. ISBN: 978-0-387-35651-8 Chapter 2, pp 82-113 |
4 | Eliminasyon geometrisi ve kapalı formlar | "Ideals, Varietiesi and Algorithms" by D. Cox, J. Little, D. O'Shea, Springer UTM, 3rd Edition, 2007. ISBN: 978-0-387-35651-8 Chapter 3, pp 115-136 |
5 | Çözümleme ve ilgili sonuçlar | "Ideals, Varietiesi and Algorithms" by D. Cox, J. Little, D. O'Shea, Springer UTM, 3rd Edition, 2007. ISBN: 978-0-387-35651-8 Chapter 3, pp 137-167 |
6 | Hilbert's Nullstellensatz, ideal-Varyete eşlemesi | "Ideals, Varietiesi and Algorithms" by D. Cox, J. Little, D. O'Shea, Springer UTM, 3rd Edition, 2007. ISBN: 978-0-387-35651-8 Chapter 4, pp 169-192 |
7 | İdeal ve varyete parçalanışları | "Ideals, Varietiesi and Algorithms" by D. Cox, J. Little, D. O'Shea, Springer UTM, 3rd Edition, 2007. ISBN: 978-0-387-35651-8 Chapter 4, pp 193-214 |
8 | Polinom halkaları ve bölümleri | "Ideals, Varietiesi and Algorithms" by D. Cox, J. Little, D. O'Shea, Springer UTM, 3rd Edition, 2007. ISBN: 978-0-387-35651-8 Chapter 5, pp 215-238 |
9 | Koordinat halkaları | "Ideals, Varietiesi and Algorithms" by D. Cox, J. Little, D. O'Shea, Springer UTM, 3rd Edition, 2007. ISBN: 978-0-387-35651-8 Chapter 5, pp 239-264 |
10 | Değişmezlik teorisi | "Ideals, Varietiesi and Algorithms" by D. Cox, J. Little, D. O'Shea, Springer UTM, 3rd Edition, 2007. ISBN: 978-0-387-35651-8 Chapter 7, pp 317-335 |
11 | Üreteçler arasındaki ilişkiler modülü | "Ideals, Varietiesi and Algorithms" by D. Cox, J. Little, D. O'Shea, Springer UTM, 3rd Edition, 2007. ISBN: 978-0-387-35651-8 Chapter 7, pp 336-355 |
12 | İzdüşüm geometrisi | "Ideals, Varietiesi and Algorithms" by D. Cox, J. Little, D. O'Shea, Springer UTM, 3rd Edition, 2007. ISBN: 978-0-387-35651-8 Chapter 8, pp 357-378 |
13 | İzdüşüm varyeteleri | "Ideals, Varietiesi and Algorithms" by D. Cox, J. Little, D. O'Shea, Springer UTM, 3rd Edition, 2007. ISBN: 978-0-387-35651-8 Chapter 8, pp 379-407 |
14 | Bezout teoremi ve boyut | "Ideals, Varietiesi and Algorithms" by D. Cox, J. Little, D. O'Shea, Springer UTM, 3rd Edition, 2007. ISBN: 978-0-387-35651-8 Chapter 8, pp 408-438 |
15 | Dersin gözden geçirilmesi | |
16 | Final Sınavı |
Ders Kitabı | "Ideals, Varietiesi and Algorithms" by D. Cox, J. Little, D. O'Shea, Springer UTM, 3rd Edition, 2007. ISBN: 978-0-387-35651-8 |
Önerilen Okumalar/Materyaller |
DEĞERLENDİRME ÖLÇÜTLERİ
Yarıyıl Aktiviteleri | Sayı | Katkı Payı % |
Katılım | ||
Laboratuvar / Uygulama | ||
Arazi Çalışması | ||
Küçük Sınav / Stüdyo Kritiği | ||
Portfolyo | ||
Ödev |
2
|
20
|
Sunum / Jüri Önünde Sunum | ||
Proje | ||
Seminer/Çalıştay | ||
Sözlü Sınav | ||
Ara Sınav |
2
|
40
|
Final Sınavı |
1
|
40
|
Toplam |
Yarıyıl İçi Çalışmalarının Başarı Notuna Katkısı |
4
|
60
|
Yarıyıl Sonu Çalışmalarının Başarı Notuna Katkısı |
1
|
40
|
Toplam |
AKTS / İŞ YÜKÜ TABLOSU
Yarıyıl Aktiviteleri | Sayı | Süre (Saat) | İş Yükü |
---|---|---|---|
Teorik Ders Saati (Sınav haftası dahildir: 16 x teorik ders saati) |
16
|
3
|
48
|
Laboratuvar / Uygulama Ders Saati (Sınav haftası dahildir. 16 x uygulama/lab ders saati) |
16
|
0
|
|
Sınıf Dışı Ders Çalışması |
14
|
3
|
42
|
Arazi Çalışması |
0
|
||
Küçük Sınav / Stüdyo Kritiği |
0
|
||
Portfolyo |
0
|
||
Ödev |
2
|
10
|
20
|
Sunum / Jüri Önünde Sunum |
0
|
||
Proje |
0
|
||
Seminer/Çalıştay |
0
|
||
Sözlü Sınav |
0
|
||
Ara Sınavlar |
2
|
20
|
40
|
Final Sınavı |
1
|
30
|
30
|
Toplam |
180
|
DERSİN ÖĞRENME ÇIKTILARININ PROGRAM YETERLİLİKLERİ İLE İLİŞKİSİ
#
|
Program Yeterlilikleri / Çıktıları |
* Katkı Düzeyi
|
||||
1
|
2
|
3
|
4
|
5
|
||
1 | Temel matematik, uygulamalı matematik veya istatistik kuramlarına ve uygulamalarına hâkim olur. |
X | ||||
2 | Matematik veya istatistik alanlarında edindiği ileri düzey bilgi ve becerilerini kullanarak verileri yorumlar, sorunları tanımlar, araştırmalara ve kanıtlara dayalı çözüm önerileri geliştirir. |
X | ||||
3 | Disiplinler arası yaklaşımla, matematik veya istatistiği gerçek yaşamda uygular ve kendi potansiyelini keşfeder. |
|||||
4 | Matematik veya İstatistik alanında edindiği ileri düzeyde bilgi ve becerilerini eleştirel bir yaklaşımla değerlendirir. |
X | ||||
5 | Kuramsal ve teknik bilgilerini detaylı olarak uzman olan veya olmayan kişilere rahatça aktarır. |
|||||
6 | Matematik veya istatistik alanlarında bireysel veya ekip olarak bir çalışmayı sürdürür, bağımsız çalışmanın ilgili tüm aşamalarında etkili olur, karar verme sürecine katılır, zamanı etkili kullanarak gerekli planlamayı yapar. |
|||||
7 | Matematik veya istatistik alanlarında yaygın olarak kullanılan yazılımlara aşina olur ve Avrupa Bilgisayar Kullanma Lisansı İleri Düzeyindeki en az bir programı etkin şekilde kullanır. |
|||||
8 | Dahil olduğu projelerin tüm aşamalarında toplumsal, bilimsel ve etik değerlere uygun hareket eder, toplumsal duyarlılık çerçevesinde proje geliştirip uygular. |
|||||
9 | Evrensel anlamda birikimli ve duyarlı olarak tüm süreçleri etkin şekilde değerlendirir ve kalite yönetimi konusunda yeterli bilince sahip olur. |
|||||
10 | Soyut düşünce yapısına hâkim olarak, somut olayları bağlar ve çözüm üretir, veri toplayarak bilimsel yöntemlerle sonuçları inceler ve yorumlar. |
X | ||||
11 | Bir yabancı dili kullanarak Matematik veya İstatistik ile ilgili bilgi toplar ve meslektaşları ile iletişim kurar. |
|||||
12 | İkinci yabancı dili orta düzeyde kullanır. |
|||||
13 | İnsanlık tarihi boyunca oluşan bilgi birikimini uzmanlık alanıyla ilişkilendirir. |
*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest
HABER |TÜM HABERLER

48 Saatlik ‘Matematik’ Maratonu
Milli Eğitim Bakanlığı’nın matematik derslerini keyifli hale getirerek öğrenmeyi kolaylaştırmak hedefiyle başlattığı ‘Matematik Seferberliği’ne İzmir’den destek geldi.

İEÜ’lü profesöre Yunanistan’dan büyük onur
Matematik ve istatistik alanında Türkiye’nin önde gelen isimlerinden biri olan İzmir Ekonomi Üniversitesi (İEÜ) Fen-Edebiyat Fakültesi Dekanı Prof. Dr. İsmihan Bayramoğlu, Yunanistan

‘Dünya Matematik ve Pi Günü’ne özel etkinlik
İzmir Ekonomi Üniversitesi (İEÜ) Matematik Bölümü, farklı üniversitelerden akademisyen ve öğrencilerin katılımıyla online olarak “Dünya Matematik ve Pi Günü” kutlaması gerçekleştirdi.