
FEN-EDEBİYAT FAKÜLTESİ
Matematik
MATH 400 | Ders Tanıtım Bilgileri
Dersin Adı |
Biomatematik
|
Kodu
|
Yarıyıl
|
Teori
(saat/hafta) |
Uygulama/Lab
(saat/hafta) |
Yerel Kredi
|
AKTS
|
MATH 400
|
Güz/Bahar
|
3
|
0
|
3
|
7
|
Ön-Koşul(lar) |
Yok
|
|||||
Dersin Dili |
İngilizce
|
|||||
Dersin Türü |
Seçmeli
|
|||||
Dersin Düzeyi |
Lisans
|
|||||
Dersin Veriliş Şekli | - | |||||
Dersin Öğretim Yöntem ve Teknikleri | Problem çözmeSoru & CevapAnlatım / Sunum | |||||
Dersin Koordinatörü | - | |||||
Öğretim Eleman(lar)ı | ||||||
Yardımcı(ları) |
Dersin Amacı | Bu derste, analiz ve cebirdeki bazı temel kavramlar, fark denklemleri, olasılık kuramı gibi temel matematik kavramlarının değişik biyolojik olgularda nasıl kullanıldığı verilecektir. Bazı modellerin ise geometri, bilgisayarlarda sayısal hesaplama teknikleriyle nitel analizleri yapılacaktır. |
Öğrenme Çıktıları |
Bu dersi başarıyla tamamlayabilen öğrenciler;
|
Ders Tanımı | Diferansiyel ve fark denklemlerinin biyolojideki uygulamaları. Doğrusal olmayan diferansiyel denklemlerin biyolojideki uygulamaları. Çizge kuramının biyolojideki uygulamaları. |
|
Temel Ders | |
Uzmanlık/Alan Dersleri |
X
|
|
Destek Dersleri | ||
İletişim ve Yönetim Becerileri Dersleri | ||
Aktarılabilir Beceri Dersleri |
HAFTALIK KONULAR VE İLGİLİ ÖN HAZIRLIK ÇALIŞMALARI
Hafta | Konular | Ön Hazırlık |
1 | Lineer diferansiyel denklemler: teori ve örnekler, giriş, temel tanımlar ve notasyon, birinci dereceden doğrusal sistemler | "An Introduction to Mathematical Biology" by Linda J.S.Allen, Pearson, 2006. ISBN-13: 978-0130352163 Section 4.1, 4.2, 4.7 |
2 | Faz Analizi, bir örnek: Farmakokinetik model | "An Introduction to Mathematical Biology" by Linda J.S.Allen, Pearson, 2006. ISBN-13: 978-0130352163 Section 4.8, 4.10 |
3 | Nüfus artış modellerine uygulama, gecikmeli logistic denklemi | "An Introduction to Mathematical Biology" by Linda J.S.Allen, Pearson, 2006. ISBN-13: 978-0130352163 Section 5.3, 5.9 |
4 | Diferansiyel denklemlerin biyolojik uygulamaları; tek popülasyon toplama, avcı-av modelleri, rekabet modelleri | "An Introduction to Mathematical Biology" by Linda J.S.Allen, Pearson, 2006. ISBN-13: 978-0130352163 Section 6.2, 6.3, 6.4 |
5 | Kemostat modeli, salgın modelleri | "An Introduction to Mathematical Biology" by Linda J.S.Allen, Pearson, 2006. ISBN-13: 978-0130352163 Section 6.7, 6.8 |
6 | Uyarılabilir sistemler | "An Introduction to Mathematical Biology" by Linda J.S.Allen, Pearson, 2006. ISBN-13: 978-0130352163 Section 6.9 |
7 | Reaksiyon-difüzyon denklemi, genlerin yayılması ve ilerleyen dalgalar | "An Introduction to Mathematical Biology" by Linda J.S.Allen, Pearson, 2006. ISBN-13: 978-0130352163 Section 7.3, 7.6 |
8 | Euler yöntemi | "Numerical solutions of ordinary differential equations", Kendall Atkinson, Weimin Han, David Stewart, Chapter 2 |
9 | Diferansiyel denklem sistemleri | "Numerical solutions of ordinary differential equations", Kendall Atkinson, Weimin Han, David Stewart, Chapter 3 |
10 | Geriye dönük Euler yöntemi ve yamuk yöntemi | "Numerical solutions of ordinary differential equations", Kendall Atkinson, Weimin Han, David Stewart, Chapter 4 |
11 | Taylor ve Runge Kutta modelleri | "Numerical solutions of ordinary differential equations", Kendall Atkinson, Weimin Han, David Stewart, Chapter 5 |
12 | Biyolojik modellere uygulamalar | |
13 | Biyolojik modellere uygulamalar | |
14 | Biyolojik modellere uygulamalar | |
15 | Dönemin gözden geçirilmesi | |
16 | Final Sınavı |
Ders Kitabı | "An Introduction to Mathematical Biology" by Linda J.S.Allen, Pearson, 2006. ISBN-13: 978-0130352163 |
Önerilen Okumalar/Materyaller | "An Invitation to Biomathematics" by Raina Stefanova Robeva, James R. Kirkwood, Robin Lee Davies, Leon Farhy, Boris P. Kovatchev, Academic Press, 1st Edition, 2007. ISBN-13: 978-0120887712 "Numerical solutions of ordinary differential equations", Kendall Atkinson, Weimin Han, David Stewart |
DEĞERLENDİRME ÖLÇÜTLERİ
Yarıyıl Aktiviteleri | Sayı | Katkı Payı % |
Katılım | ||
Laboratuvar / Uygulama | ||
Arazi Çalışması | ||
Küçük Sınav / Stüdyo Kritiği | ||
Portfolyo | ||
Ödev | ||
Sunum / Jüri Önünde Sunum |
1
|
30
|
Proje |
1
|
30
|
Seminer/Çalıştay | ||
Sözlü Sınav | ||
Ara Sınav | ||
Final Sınavı |
1
|
40
|
Toplam |
Yarıyıl İçi Çalışmalarının Başarı Notuna Katkısı |
2
|
60
|
Yarıyıl Sonu Çalışmalarının Başarı Notuna Katkısı |
1
|
40
|
Toplam |
AKTS / İŞ YÜKÜ TABLOSU
Yarıyıl Aktiviteleri | Sayı | Süre (Saat) | İş Yükü |
---|---|---|---|
Teorik Ders Saati (Sınav haftası dahildir: 16 x teorik ders saati) |
16
|
3
|
48
|
Laboratuvar / Uygulama Ders Saati (Sınav haftası dahildir. 16 x uygulama/lab ders saati) |
16
|
0
|
|
Sınıf Dışı Ders Çalışması |
14
|
4
|
56
|
Arazi Çalışması |
0
|
||
Küçük Sınav / Stüdyo Kritiği |
0
|
||
Portfolyo |
0
|
||
Ödev |
0
|
||
Sunum / Jüri Önünde Sunum |
1
|
30
|
30
|
Proje |
1
|
30
|
30
|
Seminer/Çalıştay |
0
|
||
Sözlü Sınav |
0
|
||
Ara Sınavlar |
0
|
||
Final Sınavı |
1
|
46
|
46
|
Toplam |
210
|
DERSİN ÖĞRENME ÇIKTILARININ PROGRAM YETERLİLİKLERİ İLE İLİŞKİSİ
#
|
Program Yeterlilikleri / Çıktıları |
* Katkı Düzeyi
|
||||
1
|
2
|
3
|
4
|
5
|
||
1 | Temel matematik, uygulamalı matematik veya istatistik kuramlarına ve uygulamalarına hâkim olur. |
X | ||||
2 | Matematik veya istatistik alanlarında edindiği ileri düzey bilgi ve becerilerini kullanarak verileri yorumlar, sorunları tanımlar, araştırmalara ve kanıtlara dayalı çözüm önerileri geliştirir. |
X | ||||
3 | Disiplinler arası yaklaşımla, matematik veya istatistiği gerçek yaşamda uygular ve kendi potansiyelini keşfeder. |
X | ||||
4 | Matematik veya İstatistik alanında edindiği ileri düzeyde bilgi ve becerilerini eleştirel bir yaklaşımla değerlendirir. |
|||||
5 | Kuramsal ve teknik bilgilerini detaylı olarak uzman olan veya olmayan kişilere rahatça aktarır. |
X | ||||
6 | Matematik veya istatistik alanlarında bireysel veya ekip olarak bir çalışmayı sürdürür, bağımsız çalışmanın ilgili tüm aşamalarında etkili olur, karar verme sürecine katılır, zamanı etkili kullanarak gerekli planlamayı yapar. |
|||||
7 | Matematik veya istatistik alanlarında yaygın olarak kullanılan yazılımlara aşina olur ve Avrupa Bilgisayar Kullanma Lisansı İleri Düzeyindeki en az bir programı etkin şekilde kullanır. |
|||||
8 | Dahil olduğu projelerin tüm aşamalarında toplumsal, bilimsel ve etik değerlere uygun hareket eder, toplumsal duyarlılık çerçevesinde proje geliştirip uygular. |
|||||
9 | Evrensel anlamda birikimli ve duyarlı olarak tüm süreçleri etkin şekilde değerlendirir ve kalite yönetimi konusunda yeterli bilince sahip olur. |
|||||
10 | Soyut düşünce yapısına hâkim olarak, somut olayları bağlar ve çözüm üretir, veri toplayarak bilimsel yöntemlerle sonuçları inceler ve yorumlar. |
|||||
11 | Bir yabancı dili kullanarak Matematik veya İstatistik ile ilgili bilgi toplar ve meslektaşları ile iletişim kurar. |
|||||
12 | İkinci yabancı dili orta düzeyde kullanır. |
|||||
13 | İnsanlık tarihi boyunca oluşan bilgi birikimini uzmanlık alanıyla ilişkilendirir. |
*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest
HABER |TÜM HABERLER

48 Saatlik ‘Matematik’ Maratonu
Milli Eğitim Bakanlığı’nın matematik derslerini keyifli hale getirerek öğrenmeyi kolaylaştırmak hedefiyle başlattığı ‘Matematik Seferberliği’ne İzmir’den destek geldi.

İEÜ’lü profesöre Yunanistan’dan büyük onur
Matematik ve istatistik alanında Türkiye’nin önde gelen isimlerinden biri olan İzmir Ekonomi Üniversitesi (İEÜ) Fen-Edebiyat Fakültesi Dekanı Prof. Dr. İsmihan Bayramoğlu, Yunanistan

‘Dünya Matematik ve Pi Günü’ne özel etkinlik
İzmir Ekonomi Üniversitesi (İEÜ) Matematik Bölümü, farklı üniversitelerden akademisyen ve öğrencilerin katılımıyla online olarak “Dünya Matematik ve Pi Günü” kutlaması gerçekleştirdi.