
FEN-EDEBİYAT FAKÜLTESİ
Matematik
ECON 301 | Ders Tanıtım Bilgileri
Dersin Adı |
Ekonometri
|
Kodu
|
Yarıyıl
|
Teori
(saat/hafta) |
Uygulama/Lab
(saat/hafta) |
Yerel Kredi
|
AKTS
|
ECON 301
|
Güz/Bahar
|
3
|
0
|
3
|
6
|
Ön-Koşul(lar) |
|
|||||||||
Dersin Dili |
İngilizce
|
|||||||||
Dersin Türü |
Seçmeli
|
|||||||||
Dersin Düzeyi |
Lisans
|
|||||||||
Dersin Veriliş Şekli | - | |||||||||
Dersin Öğretim Yöntem ve Teknikleri | - | |||||||||
Dersin Koordinatörü | ||||||||||
Öğretim Eleman(lar)ı | ||||||||||
Yardımcı(ları) |
Dersin Amacı | Bu dersin temel amacı ileri derecede ekonometrik analiz yapabilmeleri için öğrencilerin temel istatistik bilgisini geliştirmektir. Özellikle, bu ders öğrencilere ekonometrik tekniklerde kapsamlı altyapı vermeyi, bu altyapının uygulamasını ve R-studio istatistik paket programının yüksek seviyede kullanımını amaçlar. Her öğrenci bu derste edindiği bilgileri göstermek amacı ile bir dönem projesi hazırlamak ile yükümlüdür. |
Öğrenme Çıktıları |
Bu dersi başarıyla tamamlayabilen öğrenciler;
|
Ders Tanımı | Ekonometri iktisadi olaylara dair gerçek verilerden bilgi edinmek üzere geliştirilen, istatistik temelli bir yöntemler bütünü olarak tanımlanabilir. Ekonomik teorileri test edebilmek ve ekonomide yapılan ampirik çalışmaları anlayabilmek için ekonometri bilgisi gereklidir. Bu ders ekonominin farklı alanlarındaki örnekleri kullanarak ampirik çalışmanın nasıl yapılacağını öğretir. Ayrıca farklı türdeki ekonomik veriler, bunların nasıl elde edileceği ve nasıl kullanılacağı üzerine odaklanır. Regresyon analizi, en küçük kareler yöntemi, basit ve genel klasik regresyon modeli, hipotez testleri, model kurma sorunları, ardışık bağımlılık, çoklu varyans, çoklu doğrusallık işlenecek konular arasındadır. Ampirik çalışmayı yapabilmek için bu derste R-studio programı kullanılacaktır. |
|
Temel Ders | |
Uzmanlık/Alan Dersleri | ||
Destek Dersleri |
X
|
|
İletişim ve Yönetim Becerileri Dersleri | ||
Aktarılabilir Beceri Dersleri |
HAFTALIK KONULAR VE İLGİLİ ÖN HAZIRLIK ÇALIŞMALARI
Hafta | Konular | Ön Hazırlık |
1 | Matematiksel ve İstatistiksel Temeller | |
2 | R-studio Programına Giriş | |
3 | Regresyon Analizine Genel Bakış | |
4 | En Küçük Kareler Yöntemi, Regresyon Analizini Kullanma | |
5 | Klasik Model | |
6 | Hipotez Testi | |
7 | Çoklu Doğrusal Bağlantı | |
8 | Heteroskedastik Model | |
9 | Otokorelasyon | |
10 | Model Yapısı ve Bağımsız Değişkenleri Seçme | |
11 | İçsellik Problemi ve Araç Değişkenler Yöntemi | |
12 | Zaman Serisi Analizi I | |
13 | Zaman Serisi Analizi II | |
14 | Panel Veri Analizi | |
15 | Tercihe Bağlı Ek Konu (Zaman Kalması Halinde) | |
16 | Tercihe Bağlı Ek Konu (Zaman Kalması Halinde) |
Ders Kitabı | A. H. Studenmund, Using econometrics: a practical guide, sixth edition 2011, Boston: Addison-Wesley C. Dougherty, Introduction to Econometrics, fifth edition 2016, Oxford University Press |
Önerilen Okumalar/Materyaller | • Peter E. Kennedy, A Guide to Econometrics (5th Edition) • Jeffrey M. Woolridge, Introductory Econometrics: A Modern Approach (4th Edition) • Joshua D. Angrist and JornSteffen Pischke, Mostly Harmless Econometrics: An Empiricist’s Companion. |
DEĞERLENDİRME ÖLÇÜTLERİ
Yarıyıl Aktiviteleri | Sayı | Katkı Payı % |
Katılım |
16
|
10
|
Laboratuvar / Uygulama | ||
Arazi Çalışması | ||
Küçük Sınav / Stüdyo Kritiği | ||
Portfolyo | ||
Ödev | ||
Sunum / Jüri Önünde Sunum | ||
Proje |
1
|
30
|
Seminer/Çalıştay | ||
Sözlü Sınav | ||
Ara Sınav |
1
|
30
|
Final Sınavı |
1
|
30
|
Toplam |
Yarıyıl İçi Çalışmalarının Başarı Notuna Katkısı |
18
|
60
|
Yarıyıl Sonu Çalışmalarının Başarı Notuna Katkısı |
1
|
40
|
Toplam |
AKTS / İŞ YÜKÜ TABLOSU
Yarıyıl Aktiviteleri | Sayı | Süre (Saat) | İş Yükü |
---|---|---|---|
Teorik Ders Saati (Sınav haftası dahildir: 16 x teorik ders saati) |
16
|
3
|
48
|
Laboratuvar / Uygulama Ders Saati (Sınav haftası dahildir. 16 x uygulama/lab ders saati) |
16
|
0
|
|
Sınıf Dışı Ders Çalışması |
16
|
3
|
48
|
Arazi Çalışması |
0
|
||
Küçük Sınav / Stüdyo Kritiği |
0
|
||
Portfolyo |
0
|
||
Ödev |
0
|
||
Sunum / Jüri Önünde Sunum |
0
|
||
Proje |
1
|
24
|
24
|
Seminer/Çalıştay |
0
|
||
Sözlü Sınav |
0
|
||
Ara Sınavlar |
1
|
30
|
30
|
Final Sınavı |
1
|
30
|
30
|
Toplam |
180
|
DERSİN ÖĞRENME ÇIKTILARININ PROGRAM YETERLİLİKLERİ İLE İLİŞKİSİ
#
|
Program Yeterlilikleri / Çıktıları |
* Katkı Düzeyi
|
||||
1
|
2
|
3
|
4
|
5
|
||
1 | Temel matematik, uygulamalı matematik veya istatistik kuramlarına ve uygulamalarına hâkim olur. |
|||||
2 | Matematik veya istatistik alanlarında edindiği ileri düzey bilgi ve becerilerini kullanarak verileri yorumlar, sorunları tanımlar, araştırmalara ve kanıtlara dayalı çözüm önerileri geliştirir. |
|||||
3 | Disiplinler arası yaklaşımla, matematik veya istatistiği gerçek yaşamda uygular ve kendi potansiyelini keşfeder. |
|||||
4 | Matematik veya İstatistik alanında edindiği ileri düzeyde bilgi ve becerilerini eleştirel bir yaklaşımla değerlendirir. |
X | ||||
5 | Kuramsal ve teknik bilgilerini detaylı olarak uzman olan veya olmayan kişilere rahatça aktarır. |
X | ||||
6 | Matematik veya istatistik alanlarında bireysel veya ekip olarak bir çalışmayı sürdürür, bağımsız çalışmanın ilgili tüm aşamalarında etkili olur, karar verme sürecine katılır, zamanı etkili kullanarak gerekli planlamayı yapar. |
X | ||||
7 | Matematik veya istatistik alanlarında yaygın olarak kullanılan yazılımlara aşina olur ve Avrupa Bilgisayar Kullanma Lisansı İleri Düzeyindeki en az bir programı etkin şekilde kullanır. |
|||||
8 | Dahil olduğu projelerin tüm aşamalarında toplumsal, bilimsel ve etik değerlere uygun hareket eder, toplumsal duyarlılık çerçevesinde proje geliştirip uygular. |
|||||
9 | Evrensel anlamda birikimli ve duyarlı olarak tüm süreçleri etkin şekilde değerlendirir ve kalite yönetimi konusunda yeterli bilince sahip olur. |
X | ||||
10 | Soyut düşünce yapısına hâkim olarak, somut olayları bağlar ve çözüm üretir, veri toplayarak bilimsel yöntemlerle sonuçları inceler ve yorumlar. |
|||||
11 | Bir yabancı dili kullanarak Matematik veya İstatistik ile ilgili bilgi toplar ve meslektaşları ile iletişim kurar. |
|||||
12 | İkinci yabancı dili orta düzeyde kullanır. |
|||||
13 | İnsanlık tarihi boyunca oluşan bilgi birikimini uzmanlık alanıyla ilişkilendirir. |
*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest
HABER |TÜM HABERLER

48 Saatlik ‘Matematik’ Maratonu
Milli Eğitim Bakanlığı’nın matematik derslerini keyifli hale getirerek öğrenmeyi kolaylaştırmak hedefiyle başlattığı ‘Matematik Seferberliği’ne İzmir’den destek geldi.

İEÜ’lü profesöre Yunanistan’dan büyük onur
Matematik ve istatistik alanında Türkiye’nin önde gelen isimlerinden biri olan İzmir Ekonomi Üniversitesi (İEÜ) Fen-Edebiyat Fakültesi Dekanı Prof. Dr. İsmihan Bayramoğlu, Yunanistan

‘Dünya Matematik ve Pi Günü’ne özel etkinlik
İzmir Ekonomi Üniversitesi (İEÜ) Matematik Bölümü, farklı üniversitelerden akademisyen ve öğrencilerin katılımıyla online olarak “Dünya Matematik ve Pi Günü” kutlaması gerçekleştirdi.