1-page 16, 1.1.7 c&e
2-page 17, 1.1.9
3-page 17, 1.1.12 b
4-Show that p⇒q⇔¬p∨q
5-page 20, 1,2.4
6-page 20, 1.2.6 b,e,f,k
7-page 25, 1.2.18 b,d,j
8-page 26, 1.2.19 c
9-page 31, 1.3.11 c,d,h
10-page 39, 1.4.13 c,e,f
1) 2.2.7. d / page 53
2) 2.5.4 / page 59
3) 2.5.8 / page 61
4) 2.5.9 / page 61
5) 3.1.13 / page 67
6) 3.2.3 / page 68
7) 3.2.9. d,g / page 70 <3) 3.4.9 d
4) 3.4.18 (prove by induction)
5) 3.5.22 (Hint: Consider cases n=1, n=2, n=3 seperately and try to generalize the pattern)
6) 3.11.14
7) 3.11.15
8) 3.11.18
9) Find all non-isomorphic partial orders on a set of size 4.
10) Write an example of a total order which is not a well-order.
1) 3.3.12
2) 3.3.14
3) 3.4.9 d
1) Show that ⊗ defined on Z in class is well defined.
2) Show that the relation (a,b)≡(c,d) defined by ad=bc on A=ℤ×(ℤ\{0}) is an equivalent relation.
3) Show that ⊕ defined on Q in class is well defined.
4) 3.6.7 /p.94
5) 3.6.10 /p.94
6) 3.6.11 /p.94
7) 3.6.14 /p.95
8) Show that the relation f:ℚ→ℤ such that f((p/q))=p does NOT define a function
9) Let f(x)=(1/(1-x)) and g(x)=1-x. Find all possible composite functions (i.e., fof,gof,fog,gog,fofof,gofog,...)
10) Let f:A→B and g:B→C are functions. Show that gof is a bijection if and only if both f and g are bijections.
1) 4.1.7 b & d
2) 4.1.11
3) 4.2.4
4) 4.2.7
5) 4.2.15.c
6) 4.3.13 a & b
7) 4.4.4.6
8) Show that P(IN) (Power set) is uncountable.
9) Show that if A⊆B and A is uncountable then B is also uncountable.
10) Show that if A⊆B and B is countable then A is also countable.
Homework 6
Your browser does not support inline frames or is currently configured not to display inline frames.