IUE – MATH 306 – Abstract Algebra

 $1^{\rm st}$ Midterm — April 4, 2013 — 15:00 - 16:50

Name: _____

ID #:_____

Q1	Q2	Q3	Q4	Q5	TOTAL
20	20	20	20	20	100

Important: Show all your work. Answers without sufficient explanation might <u>not</u> get full credit. Be neat.

Signature:

GOOD LUCK!

- **1.** Which of the following binary structures are group? Why?
 - a) $G = \{(x, y) | x, y \in \mathbb{R}\}$ and (x, y) * (z, w) = (x + z, y w).
 - **b)** $G = \mathbb{R} \setminus \{1\}$ and x * y = x + y xy.
 - a) $\langle G, * \rangle$ is not a group because the binary operation * is not associative. Indeed, for $(x, y), (0, z), (0, 1) \in G$,

$$\begin{split} & [(x,y)*(0,z)]*(0,1) = (x,y-z)*(0,1) = (x,y-z-1), \\ & (x,y)*[(0,z)*(0,1)] = (x,y)*(0,z-1) = (x,y-z+1), \end{split}$$

and they are not equal.

b) Let $x, y, z \in G$. Then

$$\begin{aligned} x*(y*z) &= x*(y+z-yz) \\ &= x+y+z-yz-x(y+z-yz) \\ &= x+y+z-yz-xy-xz+xyz \\ &= x+y-xy+z-(x+y-xy)z \\ &= (x+y-xy)*z \\ &= (x*y)*z. \end{aligned}$$

Thus, the operation * is associative. Since x*0 = x+0-x0 = x = 0+x-0x = 0 * x for all $x \in G$, it follows that 0 is identity element for *. For any $x \in G$, we try to find inverse element x^{-1} of x in G; i.e., $x * x^{-1} = 0$. Then $x + x^{-1} - xx^{-1} = 0$ implies that $x^{-1} = \frac{-x}{1-x}$. Since $x \neq 1$, $\frac{-x}{1-x} \in G$. Note that also $x^{-1} * x = 0$. Therefore, every element of G has an inverse element in G. Hence, $\langle G, * \rangle$ is a group.

- 2. Let, Ø ≠ B ⊆ A and b ∈ B. Which of the following subsets are subgroups? Why?
 a) {σ ∈ S_A | σ(b) = b}
 b) {σ ∈ S_A | σ(b) ∈ B}
 - a) Let $H := \{ \sigma \in S_A | \sigma(b) = b \}$, and let $\sigma, \tau \in H$. Then $\sigma(b) = b$ and $\tau(b) = b$. So, $\sigma\tau(b) = \sigma(b) = b$. Thus, $\sigma\tau \in H$. It means that H is closed under the permutation multiplication. Since $\sigma(b) = b$, it follows that $\sigma^{-1}(b) = \sigma^{-1}\sigma(b) = b$. Therefore, $\sigma^{-1} \in H$. Clearly, identity element 1 of S_A is in Hbecause 1(b) = b. Hence, H is a subgroup of S_A .
 - **b)** Let $K := \{ \sigma \in S_A \mid \sigma(b) \in B \}$, and let $\sigma, \tau \in K$ with $\sigma(b) = b' \in B$ such that $\tau(b') \notin B$ (Note that since B is a proper subset of A, we can find such an element b'). Then $\tau\sigma(b) = \tau(b') \notin B$. It implies that K is not closed under the permutation multiplication. Therefore, K is not a subgroup of S_A .

- **3.** Let $G = A_4$ be the alternating group on 4 letters, and $H \leq G$.
 - a) Write all possible values of |H|. Briefly explain your reasoning.
 - **b)** Explicitly find a proper subgroup H of maximal order.
 - a) Note that the order of G is $\frac{4!}{2} = 12$. By Lagrange theorem, since $H \leq G$, $|H| \mid 12$. Hence all possible values of |H| are 1, 2, 3, 4, 6, 12.
 - b) The 12 elements of G are identity element 1, the 3-cycles (123), (132), (124), (142), (134), (143), (234), (243) of order 3 and product of two odd permutations (12)(34), (13)(24), (14)(23) of order 2.

Since the subgroup of order 12 is all of G, we start with order 6. Such a subgroup H consists of elements of order 1, 2, or 3 by Lagrange theorem. Note that $1 \in H$. Since G has only 3 elements of order 2, H must contain at least one 3-cycle (abc). Then the inverse of cycle (abc), (acb) is also in Hbecause $H \leq G$. If H has an element of the form (ab)(cd), by closure property of subgroup, $(abc)(ab)(cd) = (ac)(bd) \in H$ and $(acb)(ab)(cd) = (bcd) \in H$. Moreover, $(bcd)^{-1} = (bdc) \in H$. Again by closure property, (ab)(cd)(ac)(bd) = $(ad)(bc) \in H$ and $(ad)(bc)(bcd) = (adc) \in H$. So, $(adc)^{-1} = (acd) \in H$, $(acd)(ac)(bd) = (adb) \in H$ and $(adb)^{-1} = (abd) \in H$. In conclusion, we have H = G. Thus, H can not consists of an element in G of order 2, i.e. of the form (ab)(cd). If H consists of only 3-cycles, it need 6 of them. However, multiplication of two 3-cycle except with their inverses gives an element of order 2: (abc)(abd) = (ac)(bd), (abc)(acd) = (bcd) and (abc)(bcd) = (ab)(cd). It means that H does not consist of only 3-cycles. Hence, we can not find a subgroup of G of order 6.

Now, we will try to find a subgroup of order 4. By Lagrange theorem, such a group H consists of elements of order dividing 4. So, its elements have order 1, 2 or 4. We give the elements of G above, explicitly. G has no elements of order 4, also H has no elements of order 4. Thus, the elements (12)(34), (13)(24), (14)(23) of order 2 and identity element 1 are possible elements of H. Consider $H = \{1, (12)(34), (13)(24), (14)(23)\}$. Since order of every non-identity elements is 2, the inverse of each element is itself. Clearly, it is closed under permutation multiplication:

$$(12)(34)(13)(24) = (13)(24)(12)(34) = (14)(23), (12)(34)(14)(23) = (14)(23)(12)(34) = (13)(24), (13)(24)(14)(23) = (14)(23)(13)(24) = (12)(34).$$

Hence, H is subgroup of G. Also, it is the proper subgroup of G of maximal order.

4. Let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 6 & 4 & 1 & 9 & 2 & 5 & 7 & 8 \end{pmatrix}$.

- a) Write σ in cycle notation.
- **b)** Find orders of all disjoint cycles of σ .
- c) Find the order of σ .
- a) $\sigma = (134)(26)(5987)$.
- b) Let $\tau = (134)$, $\alpha = (26)$ and $\beta = (5987)$. Then $\tau^2 = (143)$ and $\tau^3 = 1$. So, the order of τ is 3. $\alpha^2 = 1$ implies that the order of α is 2. Consider β ; $\beta^2 = (58)(97)$, $\beta^3 = (5789)$ and $\beta^4 = 1$. Thus, the order of β is 4. Remember that an *n*-cycle is of order *n*.

$$\begin{split} \sigma^2 &= (143)(58)(97), \\ \sigma^3 &= (26)(5789), \\ \sigma^4 &= (134), \\ \sigma^5 &= (143)(26)(5987), \\ \sigma^6 &= (58)(97), \\ \sigma^7 &= (134)(26)(5789), \\ \sigma^8 &= (143), \\ \sigma^9 &= (26)(5987), \\ \sigma^{10} &= (134)(58)(97), \\ \sigma^{11} &= (143)(26)(5789), \\ \sigma^{12} &= 1. \end{split}$$

Therefore, the order of σ is 12. Note that $|\sigma| = \text{lcm}(3, 2, 4)$, where it is the least common multiple of order of disjoint cycles.

5. Show that if G is a finite abelian group having exactly 3 subgroups, then G is cyclic.

By fundamental theorem of finitely generated abelian groups, G is isomorphic to a direct product of cyclic groups. Suppose that G has two or more generators in each generating set. Let g and g' be two generators in a fixed generating set. Since both are generators in the same generating set, $\langle g \rangle \neq \langle g' \rangle$ and these cyclic groups are proper non-trivial subgroups of G. Then G has 4 different subgroups: 1, G, $\langle g \rangle$ and $\langle g' \rangle$. It is contradiction because G has exactly 3 subgroups. Hence, G is generated by one element and it is isomorphic to a cyclic group by fundamental theorem of finite abelian groups.