IUE – MATH 306 – Abstract Algebra

 2^{nd} Midterm — May 9, 2014 — 15:00 - $1\overline{6:50}$

Name: _____

ID #: _____

Q1	Q2	Q3	Q4	Q5	TOTAL
20	20	20	20	20	100

Important: Show all your work. Answers without sufficient explanation might <u>not</u> get full credit. Be neat.

Signature: _____

GOOD LUCK!

1. Write the definition of

a) kernel,

b) normal subgroup.

a) Let $\phi : G \to G'$ be a group homomorphism from a multiplicative group G with identity e into a multiplicative group G' with identity e'. Then

$$\operatorname{Ker}\phi = \{g \in G \,|\, \phi(g) = e'\}$$

b) Let *H* be a subgroup of a group *G*. Then *H* is called normal subgroup of *G* if gH = Hg for all $g \in G$.

2. Show that A_n is a normal subgroup of S_n .

Note that the index $[S_n : A_n]$ of A_n in S_n is 2 because $|S_n| = n!$ and $|A_n| = n!/2$. It means that number of left (or right) cosets of A_n in S_n are 2. Let $\sigma \in S_n - A_n$. Then the two left cosets of A_n is $1A_n = A_n$ and σA_n . So, $\sigma A_n = S_n - A_n$. On the other hand, the two right cosets of A_n is A_n and $A_n\sigma$. Thus, we must have $A_n\sigma = S_n - A_n$. Hence, $\sigma A_n = A_n\sigma$. **3.** Find all possible group homomorphisms from $\mathbb{Z} \times \mathbb{Z}$ to $\mathbb{Z} \times \mathbb{Z}$. For each homomorphism, describe its kernel and its image.

Note that $\mathbb{Z} \times \mathbb{Z}$ is generated by (1,0) and (0,1). Let ϕ be a group homomorphism from $\mathbb{Z} \times \mathbb{Z}$ to $\mathbb{Z} \times \mathbb{Z}$ and (m,n) an element in $\mathbb{Z} \times \mathbb{Z}$. Then

$$\phi((m,n)) = \phi((1,0) + \dots + (1,0) + (0,1) + \dots + (0,1))$$

= $\phi((1,0)) + \dots + \phi((1,0)) + \phi((0,1)) + \dots + \phi((0,1))$
= $m\phi((1,0)) + n\phi((0,1)).$

Therefore, it is enough to define that $\phi((1,0))$ and $\phi((0,1))$. For elements $(a,b), (c,d) \in \mathbb{Z} \times \mathbb{Z}$, let $\phi_{(a,b),(c,d)} : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ be the homomorphism with

$$\phi_{(a,b),(c,d)}((1,0)) = (a,b)$$

$$\phi_{(a,b),(c,d)}((0,1)) = (c,d).$$

Then $\phi((m, n)) = (ma + nc, mb + nd)$ for any $(m, n) \in \mathbb{Z} \times \mathbb{Z}$. We consider four cases:

- (a) $\operatorname{Ker}\phi_{(a,b),(c,d)} \neq \{(0,0)\}$ and $\operatorname{Im}\phi_{(a,b),(c,d)} \neq \mathbb{Z} \times \mathbb{Z}$.
 - (i) If a = b = c = d = 0, then $\phi_{(0,0),(0,0)}$ is zero map, and its kernel is $\mathbb{Z} \times \mathbb{Z}$, its image is 0.
 - (ii) If a = c = 0, then $\phi_{(0,b),(0,d)}((m,n)) = (0, mb + nd)$. Then it is clearly neither injective nor surjective.
 - (iii) Vice versa for b = d = 0.
- (b) $\operatorname{Ker}\phi_{(a,b),(c,d)} = \{(0,0)\}$ and $\operatorname{Im}\phi_{(a,b),(c,d)} \neq \mathbb{Z} \times \mathbb{Z}$.
 - (i) If b = c = 0 and $a, d \neq 0$, then $\phi_{(a,0),(0,d)}((m,n)) = (ma, nd)$. Since $a, d \neq 0$, (ma, nd) = (m'a, n'd) implies m = m' and n = n'. So, $\phi_{(a,0),(0,d)}$ is injective. However, it is surjective if and only if $a, d = \pm 1$. Indeed, we can find a pair (m, n) satisfying ma = 1 and nd = 1 if and only if $a, d = \pm 1$.
 - (ii) Vice versa for a = d = 0 and $b, c \neq 0$.
- (c) $\operatorname{Ker}\phi_{(a,b),(c,d)} \neq \{(0,0)\}$ and $\operatorname{Im}\phi_{(a,b),(c,d)} = \mathbb{Z} \times \mathbb{Z}$. There is no possibility satisfying that $\phi_{(a,b),(c,d)}$ is surjective but not injective.
- (d) $\operatorname{Ker}\phi_{(a,b),(c,d)} = \{(0,0)\}$ and $\operatorname{Im}\phi_{(a,b),(c,d)} = \mathbb{Z} \times \mathbb{Z}$. Since $\phi(m,n) = (ma + nc, mb + nd)$,

$$Im\phi = \langle (a, c), (b, d) \rangle$$

Ker $\phi = \{(m, n) | ma + nc = 0 \land mb + nd = 0\}$
= $\{(m, n) | ma + nc = 0\} \land \{(m, n) | mb + nd = 0\}.$

So, it is enough to find one of them explicitly. Note that if a = c = 0, then clearly each (m, n) is in this set. If a = 0 and $c \neq 0$ (or vice versa), then the solution set is (m, 0) (or (0, n)). Thus, wlog take $a, c \neq 0$. Let $d = \gcd(a, c)$ and $a = dk, c = d\ell$ for some $k, \ell \in \mathbb{Z}$. Hence, ma + nc = 0implies $mdk + nd\ell = 0$, and so, $mk + n\ell = 0$. Since $\gcd(k, \ell) = 1, m = \ell \alpha$ and $n = -k\alpha$ for some $\alpha \in \mathbb{Z}$. Hence the solution set is $\{(\ell\alpha, -k\alpha) | \alpha \in \mathbb{Z}\} = \langle (\ell, -k) \rangle$

- 4. Give examples of rings described below or explain why it does not exist;
 - a) a ring containing zero divisors but not unity,
 - b) a ring with a unique zero divisor.
 - a) There is a ring containing zero divisors but not unity. Consider $2\mathbb{Z}_4$. We know that $2\mathbb{Z}_4$ is an abelian group under addition, the multiplication operation has associative and the distribution property and $2\mathbb{Z}_4$ has no unit. However, it has zero divisors. For example, $(\overline{2})(\overline{4}) = \overline{0}$ in $2\mathbb{Z}_4$.
 - b) There is a ring with a unique zero divisor. If R is a ring and $0 \neq a$ is a zero divisor of R, then there exists a nonzero element b in R such that ab = 0. Thus, b is also a zero divisor of R. If R has unique zero divisor, a = b and $a^2 = 0$ in R. For example, \mathbb{Z}_4 is a ring with unique zero divisor 2.

Let R be an integral domain. Suppose that the characteristic of R is $n \neq 0$. Then n is the smallest positive integer satisfying $n \cdot a = 0$ for all $a \in R$. Therefore, $n \cdot 1 = 0$, where $0 \neq 1$ is unit element of integral domain R. If n = xy for some $x, y \in R$, then $(x \cdot 1)(y \cdot 1) = (xy) \cdot 1 = n \cdot 1 = 0$. Since R is integral domain, one of $x \cdot 1$ or $y \cdot 1$ must be 0. However, n is the smallest positive integer satisfying this property. Hence, n must be a prime number.