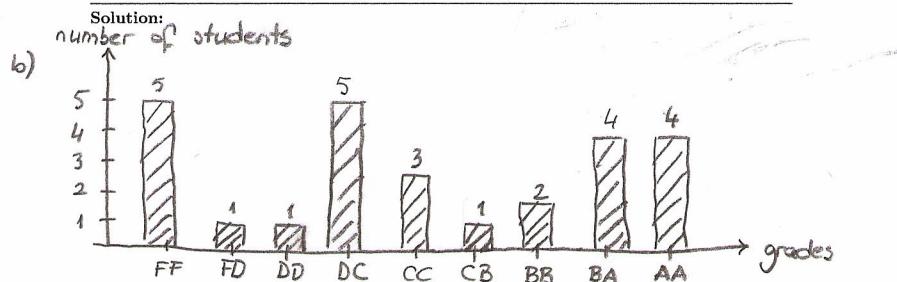


Question 1. The grades obtained by the students of one course are given in the following frequency distribution table:

CLASSES Grades (Letter Grades)	FREQUENCIES Number of Students	CUMULATIVE FREQUENCIES a)
0.00 (FF)	5	5
0.50 (FD)	1	6
1.00 (DD)	1	7
1.50 (DC)	5	12
2.00 (CC)	3	15
2.50 (CB)	1	16
3.00 (BB)	2	18
3.50 (BA)	4	22
4.00 (AA)	4	26

- Fill the Cumulative Frequencies column.
- Graph the bar chart of the given data.
- Find the mean, median, and mode/s (if any) of the given data.
- Find the range and interquartile range (IQR) of the given data.



c) $\bar{x} = \frac{5(0) + 1(0.5) + 1(1) + 5(1.5) + 3(2) + 1(2.5) + 2(3) + 4(3.5) + 4(4)}{26} \approx 2.06 //$

\tilde{x} = value at $0.5(27) = 13.5^{\text{th}}$ ordered position = 2.00 //

mode = 0.00 and 1.50 //

d) range = max - min = 4.00 - 0.00 = 4.00 //

$$Q_1 = \text{value at } 0.25(27) = 6.75^{\text{th}} \text{ ordered position} \\ = 0.50 + (0.75)(1.00 - 0.50) = 0.875$$

$$Q_3 = \text{value at } 0.75(27) = 20.25^{\text{th}} \text{ ordered position} \\ = 3.50 + (0.25)(3.50 - 3.50) = 3.50$$

$$\text{IQR} = Q_3 - Q_1 = 3.50 - 0.875 = 2.625 //$$

Question 2. A professor finds that she awards a final grade of A to 20% of her students. Of those who obtain a final grade of A, 70% obtained an A on the midterm examination. Also, 10% of the students who failed to obtain a final grade of A earned an A on the midterm exam. What is the probability that a student with an A on the midterm examination will obtain a final grade of A?

Solution:

Let

F = "student obtains a final grade of A"

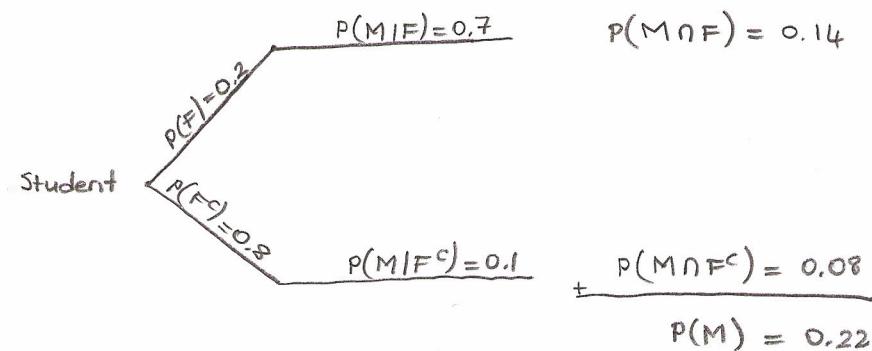
M = "student obtains an A on the midterm exam"

$$P(F) = 0.20 \quad P(M|F) = 0.70 \quad P(M|F^c) = 0.10 \quad P(F|M) = ?$$

Using Bayes' theorem,

$$P(F|M) = \frac{P(M|F)P(F)}{P(M|F)P(F) + P(M|F^c)P(F^c)} \\ = \frac{(0.7)(0.2)}{(0.7)(0.2) + (0.1)(0.8)} \approx 0.6364 //$$

OR



$$P(F|M) = \frac{P(F \cap M)}{P(M)} = \frac{0.14}{0.22} \approx 0.6364 //$$

Question 3. A company specializes in installing and servicing central-heating furnaces. In this prewinter period, service calls may result in an order for a new furnace. The following table shows estimated probabilities for the numbers of new furnace orders generated in this way in the last 2 weeks of September.

Number of Orders	0	1	2	3	4	5
Probability	0.10	0.14	0.26	0.28	...	0.07

- Graph the probability distribution.
- Calculate the cumulative probability distribution.
- Find the probability that at least 3 orders will be generated in this period.
- Find the mean and the standard deviation of the number of orders for new furnaces in this period.
- If the profit per order in the last 2 weeks of September of this company is estimated to be \$250, find the mean and standard deviation of the profit for this period.

Solution:

Let X be the number of orders of the new furnace in the last 2 weeks of September.

b)

x	P(x)	F(x)
0	0.10	0.10
1	0.14	0.24
2	0.26	0.50
3	0.28	0.78
4	0.15	0.93
5	0.07	1.00

c) $P\{X \geq 3\} = P(3) + P(4) + P(5) = 0.28 + 0.15 + 0.07 = 0.50$

d)

x	P(x)	$xP(x)$	x^2	$x^2P(x)$
0	0.10	0	0	0
1	0.14	1	0.14	
2	0.26	4	1.04	
3	0.28	9	2.52	
4	0.15	16	2.40	$\sigma_x^2 = E(x^2) - \mu_x^2 = 1.8475$
5	0.07	25	1.75	$\sigma_x = \sqrt{\sigma_x^2} \approx 1.3592$
		1.00	2.45	7.85

e) If P denotes the profit per order in the last 2 weeks of September of this company, then $P = 250X$.

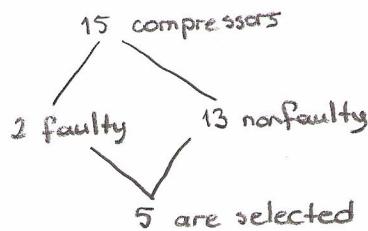
$$\mu_P = 250\mu_x = 250(2.45) = \$ 612.5$$

$$\sigma_P = 1250\sigma_x = 250(1.3592) \approx \$ 339.8$$

Question 4. A large company has an inspection system for the batches of small compressors purchased from vendors. A batch typically contains 15 compressors. In the inspection system, a random sample of 5 is selected and all are tested. Suppose there are 2 faulty compressors in the batch of 15.

- What is the probability that for a given sample there will be 1 faulty compressor?
- What is the probability that inspection will discover both faulty compressors?
- What is the expected number of the faulty compressors under inspection?

Solution:



If X is the number of faulty compressors in the inspection system, then X is a hypergeometric random variable with $N=15$, $s=2$, and $n=5$.

$$p(x) = P\{X=x\} = \frac{\binom{2}{x} \binom{13}{5-x}}{\binom{15}{5}}, \max(0, 5-15+2) \leq x \leq \min(2, 5) \quad 0 \leq x \leq 2$$

$$a) P\{X=1\} = P(1) = \frac{\binom{2}{1} \binom{13}{4}}{\binom{15}{5}} = \frac{2 \cdot \frac{13 \cdot 12 \cdot 11}{4 \cdot 3 \cdot 2 \cdot 1}}{\frac{15 \cdot 14 \cdot 13 \cdot 12 \cdot 11}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}} = \frac{20}{42} \approx 0.4762$$

$$b) P\{X=2\} = P(2) = \frac{\binom{2}{2} \binom{13}{3}}{\binom{15}{5}} = \frac{1 \cdot \frac{13 \cdot 12 \cdot 11}{3 \cdot 2 \cdot 1}}{\frac{15 \cdot 14 \cdot 13 \cdot 12 \cdot 11}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}} = \frac{2}{21} \approx 0.0952$$

$$c) \mu_x = n \frac{s}{N} = 5 \frac{2}{15} \approx 0.6667$$

OR

x	P(x)	$xP(x)$
0	0.4286	0
1	0.4762	0.4762
2	0.0952	0.1904

$$\mu_x = \sum_{x=0}^2 xP(x) = 0.6666$$

0.6666