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1.

(a) Evaluate the improper integral or show that it diverges
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where ¢ € (1,00) is any positive number. Let Inz = ¢, — dx = dt then
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So, the integral diverges.
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(b) Find the length of the curve y = % + — fromz =1 to x =4.
x

Solution : The arc length element is
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ds =+4/1 —
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2. Find the volume of the solid obtained by rotating the plane region R bounded by
y=2z(3—2x) and y = 0 between z = 0 and x = 3 about

(a) the z-axis using plane slices

(b) the y-axis using cylindrical shells

Solution :

(a) If the region R bounded by y = x(3 — x) is rotated about the x-axis, to
find the volume of the obtained solid we use the method of slicing. Here,

f(z) = x(3 — x). So,

V = ﬂ/og[:c(B — z)]%dx
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7r/ (92% — 62° + 2*)dx
0
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3 81
= 7(32° - 5:1:4 + 51‘5) = —15 cu.units
0

(b) If the region R bounded by y = (3 — ) is rotated about the y-axis, to find
the volume of the obtained solid we use the method of cylindrical shells. So,
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3. Test the given series for convergence
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Solution : We apply the ratio test

, n+ 1)t 3! 1 1\" e
lim —+ = ] ( : == 1+=-) =-<1
nl—{go an n1—>oo Jtl(n+ 1) n» 3 nl—>nc}o + n
nTL
Hence, according to the ratio test, the series ] converges.
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We apply the alternating series test, since
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So, it converges. But the series does not converges absolutely, since
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4.
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(a) Find the Maclourin series of by using the representation ——— = Z nz".

(1—x)?

Solution :
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By differentiating both sides of m = z:: nx", we have
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Multiplying both sides with x yields
Z 1+ 33‘)
n .
1 (1—x)3

1
+ 1 in powers of x+ 1. Where does

(b) Find the Taylor series representation of 395

the series converge?
Solution : Let t +1 =t and x =t — 1, then
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Interval of the convergence: ‘Z‘ <1 then

1<3t<1 = 4<t<4 = 4< +1<4 = 7< <1
A 3 3 37 3 373



