1. (a) Starting with the power series representation
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determine the Taylor series representation of f(z) = — in powers of z — 5.
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Solution:

First, differentiate the function and its series representation with respect

-
to x to get
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Let t =x —5,ie.,x =541t So, we have
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Then multiply the resulting equation by %% to arrive at
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Substitute = for z in

Finally, use the transformation ¢t = x — 5 to find
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(b) Tf S(x) = [ sin () dt, find lim,_o — 37S ()
x

Solution: 6 0
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Maclaurin series for sin (#%) = ¢ 3 + T

S(x) = [Tsin (12) dt = [ <t2 — ot - ) dt
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Substitute S(x) in the limit:
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. Find the Fourier series of the function f(t) with period 2 whose values in the interval

[—1,1) are given by
0 if1<t<0
ﬂw:{t ifo<t<l "

Solution:
The Fourier coefficients of f are as follows:
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0 = /_ F(#) cos(nrt)dt
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= / t cos(nmt)dt
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Hence, the Fourier series of f is
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(a) Find the general solution to xd—y + 3y = 6.
T

Solution:

Multiply both sides by u(x) to obtain

d
#Y 3xy = 62°.
dx

That is, (z%y) = 62°. Integrate both sides to get y = 2% + Cz 2.



(b)

(b)

Solve the integral equation y(z) = 2+ [ e ¥")dt, where y(0) = 2.

Solution:
dy
dx

— eV
eYdy = dx

e =2x4+C=y=In(z+0C)
y(0) =In(C)=2= C =¢?

y =In(z +¢?)
Find the general solution of the following ordinary differential equation

ey —x)dr + (14 €")dy = 0.

Solution:
Let M =e"(y — ) and N = (1 + €”). Since
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the given equation is exact and there exists a solution ¢ s.t
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Then the solution is of the form (by integrating N with respect to y)

o(x,y) =y +ye’ + g(x), (1)

where ¢ is an arbitrary function of z. Differentiation of (1) with respect to x
and equating resulting equation to N we obtain

g (r) = —xe”,

which implies that
g(x) = —ze® +e" +c.

Hence, the solution is obtained as
o(z,y) =y +ye® —ze® + e +c=0.

Find the general solution of the following homogeneous differential equation

dy

Y oy — rsin2(Y
T =Y xsm(x).



Solution:
The given differential equation is of the type homogeneous and use the substi-
tution v = £ for

—_— = = — 2 —_
iz oz o0 (x)’
which implies the equation as
dv . 9
v—i—:r:% = v — sin“(v)
Thus
dv ~ dx
sin?(v)

which yields the solution as



