
1. (a) Starting with the power series representation

1

1− x
= 1 + x+ x2 + x3 + ... =

∞∑
n=0

xn

determine the Taylor series representation of f(x) =
1

x2
in powers of x− 5.

Solution:

First, differentiate the function
1

1− x
and its series representation with respect

to x to get

1

(1− x)2
= 1 + 2x+ 3x2 + 4x3 + ... =

∑∞
n=1 n x

n−1.

Let t = x− 5, i.e., x = 5 + t. So, we have

f(x) =
1

x2
=

1

(5 + t)2
=

1

25
(

1 + t
5

)2 .

Substitute
−t
5

for x in
1

(1− x)2
=
∑∞

n=1 n x
n−1, to get

1(
1 +

t

5

)2 =
∑∞

n=1 n
(−t

5

)n−1

.

Then multiply the resulting equation by
1

25
to arrive at

1

25
(

1 +
t

5

)2 =
1

25

∑∞
n=1 n

(−t
5

)n−1

.

Finally, use the transformation t = x− 5 to find

1

x2
=
∑∞

n=1

(−1)n−1 n

5n+1
(x− 5)n−1.

(b) If S(x) =
∫ x

0
sin (t2) dt, find limx→0

x3 − 3S(x)

x7

Solution:

Maclaurin series for sin (t2) = t2 − t6

3!
+
t10

5!
− ...

S(x) =
∫ x

0
sin (t2) dt =

∫ x

0

(
t2 − t6

3!
+
t10

5!
− ...

)
dt

S(x) =
(t3

3
− t7

7× 3!
+

t11

11× 5!
− ...

)∣∣∣x
0

S(x) =
x3

3
− x7

7× 3!
+

x11

11× 5!
− ...

Substitute S(x) in the limit:



limx→0
x3 − 3S(x)

x7
= limx→0

x3 − 3
(x3

3
− x7

7× 3!
+

x11

11× 5!
− ...

)
x7

= limx→0

( 3

7× 3!
− 3 x4

11× 5!
+ ...

)
=

3

7× 3!
=

1

14

2. Find the Fourier series of the function f(t) with period 2 whose values in the interval
[−1, 1) are given by

f(t) =

{
0 if 1 ≤ t < 0
t if 0 ≤ t < 1

.

Solution:
The Fourier coefficients of f are as follows:

a0

2
=

1

2

∫ 1

−1

f(t)dt =
1

2

∫ 1

0

tdt =
1

4
,

an =

∫ 1

−1

f(t) cos(nπt)dt

=

∫ 1

0

t cos(nπt)dt

=
(−1)n − 1

n2π2

=

{
−2/(nπ)2 if n is odd
0 if n is even

,

and

bn =

∫ 1

0

t sin(nπt)dt =
−(−1)n

nπ
.

Hence, the Fourier series of f is

1

4
− 2

π2

∞∑
k=1

1

(2k − 1)2
cos((2k − 1)πt)− 1

π

∞∑
k=1

(−1)k

k
sin(kπt).

3. (a) Find the general solution to x
dy

dx
+ 3y = 6x3.

Solution:
dy

dx
+

3

x
y = 6x2.

µ(x) = e
∫

3
x

dx = x3.

Multiply both sides by µ(x) to obtain

x3 dy

dx
+ 3x2y = 6x5.

That is, (x3y)
′
= 6x5. Integrate both sides to get y = x3 + Cx−3.



(b) Solve the integral equation y(x) = 2 +
∫ x

0
e−y(t)dt, where y(0) = 2.

Solution:
dy

dx
= e−y

eydy = dx

ey = x+ C ⇒ y = ln(x+ C)

y(0) = ln(C) = 2⇒ C = e2

y = ln(x+ e2)

4. (a) Find the general solution of the following ordinary differential equation

ex(y − x)dx+ (1 + ex)dy = 0.

Solution:
Let M = ex(y − x) and N = (1 + ex). Since

∂M

∂y
=
∂N

∂x
= ex,

the given equation is exact and there exists a solution φ s.t

∂φ

∂x
= M,

∂φ

∂y
= N.

Then the solution is of the form (by integrating N with respect to y)

φ(x, y) = y + yex + g(x), (1)

where g is an arbitrary function of x. Differentiation of (1) with respect to x
and equating resulting equation to N we obtain

g′(x) = −xex,

which implies that
g(x) = −xex + ex + c.

Hence, the solution is obtained as

φ(x, y) = y + yex − xex + ex + c = 0.

(b) Find the general solution of the following homogeneous differential equation

x
dy

dx
= y − x sin2(

y

x
).



Solution:
The given differential equation is of the type homogeneous and use the substi-
tution v = y

x
for

dy

dx
=
y

x
− sin2(

y

x
),

which implies the equation as

v + x
dv

dx
= v − sin2(v).

Thus

− dv

sin2(v)
=
dx

x

which yields the solution as

cot(
y

x
) = ln(xc).


