SOLUTIONS
1.

a) Rotate about the x-axis, use the slicing method
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b) Rotate about the y-axis, use the cylindrical shell method
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2. a) For z # y, we have
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The latter expression has the value 222 at points of the line x = y. Therefore,
we extend the definition of f(x,y) so that f(x,z) = 222 then the resulting
function will be equal to f(z,y) = % + y? everywhere, and continuous ev-
erywhere
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3. f(z,y) = In(z® + 9?)
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b) f(1,2) = In9, the point of tangency is (1,2,In9). Equation of the
tangent plane:
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d) Equation of the normal line:
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4. a) The point (z,y, z) must be a critical function Lagrangian function
L=2*+y*+ 2>+ Mz + 2y + 22 — 3).

To find these critical points we have
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The first three equations yields y = z = —\, x = —\/2. Substituting
these into the fourth equation we get A = —2/3, so that the critical point is

(3,2, %), whose distance from the origin is 1.
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b) f(z,y) = zye "™

filz,y) = y(1 —z)e™™

falw,y) = a(L+y)e™™

A= fule,y) = (=2y +zy)e ™
B=fulr,y)=1-z+y—ay)e "

C = fa(z,y) = 2o+ zy)e ™™™

Critical points are (0,0) and (1, —1).

At (0,0): A=0, B=1and C =0, so it is a saddle point.

At (1,-1): A=e¢2, B=0and C = e 2 soit is a local minimum point.



