F	-01		
25 points	25 points	25 points	100 points
2	3	4	Total
	⊳ 5 points 2	2 3	25 points 25 points 25 points 2 2 3 4

MATH 153 CALCULUS I 15.12.2012

İzmir University of Economics Faculty of Arts and Science Department of Mathematics

SECOND MIDTERM EXAM

Nam	ne:
Stud	lent No:
Depa	artment:
Secti	ion: Check for your instructor below:
	Tahsin Öner
	Sevin Gümgüm
	Burak Ordin

1. (a) Evaluate the limit
$$\lim_{x \to \infty} (1 + \frac{1}{3x})^{2x}$$

Let $y = (1 + \frac{1}{3x})^{2x}$. A pply \ln to both sides
 $\ln y = \ln(1 + \frac{1}{3x})^{2x}$ =) $\ln y = 2x \cdot \ln(1 + \frac{1}{3x})$
lim $\ln y = \lim_{x \to \infty} \frac{2x \cdot \ln(1 + \frac{1}{3x})}{\frac{14}{2x}}$ (∞ o)
 $= \lim_{x \to \infty} \frac{\ln(1 + \frac{1}{3x})}{\frac{14}{2x}}$ ($\frac{0}{0}$)
A pply L'Hopitod edge
 $= \lim_{x \to \infty} \frac{1}{\frac{1}{2x^2}} \cdot (\frac{-1}{3x^2})$
 $= \frac{2}{3}$
 $= \frac{2}{3}$

(b) Let f be a differentiable function on $(-\infty, \infty)$ and $f'(1) \neq 0$. Evaluate the limit $f(x) \sin \left(\frac{\pi x}{2} \right) = f(1)$

$$\lim_{x \to 1} \frac{f(x) \sin\left(\frac{2}{2}\right) - f(1)}{f(x) \cos(\pi x) + f(1)}$$

$$\lim_{x \to 1} \frac{f(x) \cdot \sin\left(\frac{\pi x}{2}\right) - f(x)}{f(x) \cdot \cos(\pi x) + f(1)} \quad \left(\frac{0}{0}\right)$$

$$\xrightarrow{x \to 1} \quad f(x) \cdot \cos(\pi x) + f(1) \quad \left(\frac{0}{0}\right)$$

$$\xrightarrow{x \to 1} \quad f(x) \cdot \sin\left(\frac{\pi x}{2}\right) + \frac{1}{2} \cos\left(\frac{\pi x}{2}\right) \cdot f(x)$$

$$= \lim_{x \to 1} \frac{f'(x) \cdot \sin\left(\frac{\pi x}{2}\right) + \frac{1}{2} \cos\left(\frac{\pi x}{2}\right) \cdot f(x)}{f'(x) \cdot \cos(\pi x) - \pi \sin(\pi x) \cdot f(x)}$$

$$= \frac{f'(1) \sin\left(\frac{\pi}{2}\right) + \frac{\pi}{2} \cos\left(\frac{\pi}{2}\right) \cdot f(1)}{f'(1) \cos(\pi) - \pi \sin(\pi) \cdot f(1)}$$

$$= \frac{f'(1) \sin\left(\frac{\pi}{2}\right)}{f'(1) \cos(\pi) - \pi \sin(\pi) \cdot f(1)}$$

$$= \frac{f'(1) \cdot \sin\left(\frac{\pi}{2}\right)}{f'(1) \cos(\pi)}$$

2. (a) One side of a right triangle 8cm long decreases at a rate of 1cm/min and the other side which is 3cm long increases at a rate of 2cm/min. How fast is the hypothenuse changing?

(b) Suppose an airline policy states that all baggage must be box-shaped with a sum of length, width and height 64*cm*. What are the dimensions and volume of a square-based box with the greatest volume under these conditions?

The box is square based so x=y

$$x+y+2 = 2x+2 = 64$$

 $Maximize = x \cdot y \cdot z = x^2 \cdot z$
 $J = 2x+z = 64$ then $z = 64-2x$
 $Volume = V(x) = x^2 \cdot (64-2x)$
 $V'(x) = 2x \cdot (64-2x) - 2x^2 = 0$
 $2x (64-2x-x) = 0$
 $x \neq 0 - \frac{64}{3} = x$
 $x = 64 = 3$ y= $\frac{64}{3}$ and $z = 64 - 2\frac{64}{3}$ when
 $x = y = z = \frac{64}{3}$

3. Let $f(x) = \frac{x^2 - 2x + 1}{2x - 4}$.

(a) Find the domain, the intercepts, and the asymptotes (explain your answer) of

Domain:
$$k = \frac{223}{2}$$

x-intercept: $(f(x)=0)$
 $\frac{x^2-2x+1}{2x-4} = 0 = 3 = 1$
 $(1,0)$
y-intercept: $(x=0)$
 $(0, -1/4)$
 $(0, -1/4)$
 (0)
 $(1,0)$
 $(0, -1/4)$
 (0)
 $(1,0)$
 $(0, -1/4)$
 (0)
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(0, -1/4)$
 $(1,0)$
 $(0, -1/4)$
 (0)
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$
 $(1,0)$

(b) Find the intervals of increase and decrease and the local extreme value(s) (if any) of f.

$$f(x) = \frac{x}{2} + \frac{1}{2x-4} \qquad f'(x) \neq \frac{1}{2} - \frac{2}{(2x-4)^2} \qquad (-\infty,1) \quad (1,3) \quad 3 \quad (3,\infty) \\ p(x) \quad inc. \quad dec. \quad inc. \\ f(x) = \frac{(2x-4)^2}{2(2x-4)^2} = 0 \qquad f(x) = 0 \quad local max value \\ f(x) = \frac{(2x-4)^2}{2(2x-4)^2} = 0 \qquad f(1) = 0 \quad local max value \\ f(x) = \frac{(2x-4)^2}{2(2x-4)^2} = 0 \qquad f(1) = 0 \quad local max value \\ f(x) = \frac{(2x-4)^2}{2(2x-4)^2} = 0 \qquad f(x) = 0 \quad local max value \\ f(x) = \frac{(2x-4)^2}{2(2x-4)^2} = 0 \qquad f(x) = 0 \quad local max value \\ f(x) = \frac{(2x-4)^2}{2(2x-4)^2} = 0 \qquad f(x) = 0 \quad local max value \\ f(x) = 0 \quad local max val$$

(c) Find the intervals where f is concave up and concave down, and inflection point(s)(if any).

4. (a) Use a suitable linearization (linear approximation) to approximate (2.02)³.
Find linearization of
$$f(x) = x^{3}$$
 about 2:
 $L(x) = f(2) + f'(2) \cdot (x-2)$
 $\left\{ \begin{array}{l} f(x) = x^{3} = i + f(2) = 8 \\ p'(x) = 3x^{2} = i + p'(2) = 12 \end{array} \right\}$
 $L(x) = 8 + 12 (x-2)$
 $(2,02)^{3} = f(2,02) \approx L(2,02) = 8 + 12 \cdot (2,02-2) \\ = 8 + 12 \cdot (0,02) \\ = 8 + 12 \cdot (0,02) \\ = 8 + 24$
(b) Find the Maclaurin polynomial of order *n* for $f(x) = xe^{-x}$.
 $P_{n}(x) = f(0) + f'(0) \times \frac{+f'(0)}{2!} \times^{2} + \dots + \frac{f^{(n)}(0)}{n!} \times^{n}$
 $f'(x) = -xe^{-x} = e^{-x} (1-x) = i p'(0) = 0$
 $f'(x) = -e^{-x} (1-x) = e^{-x} (2-x) = i p^{0}(0) = 3$
 $f''(x) = -e^{-x} (2-x) + e^{-x} = -e^{-x} (2-x) = i p^{0}(0) = 3$
 $f''(x) = -e^{-x} (3-x) - e^{-x} = -e^{-x} (4-x) = p^{0}(0) = -4$
 $\frac{1}{2} (n)(x) = (-1)^{n+1} e^{-x} (n-x) = 0$
 $P_{n}(x) = x - \frac{9}{2!} \times^{2} + \frac{3}{3!} \times^{3} - \frac{4}{4!} \times^{4} + \dots + \frac{(-n)^{n+1} n}{n!} + x^{n}$
 $P_{n}(x) = \frac{2}{2!} (-1)^{\frac{n+1}{2!}} x^{\frac{1}{2!}}$