MATH 103 – HOMEWORK ASSIGNMENT I

- 1. Consider the predicate x = 2y which contains two free variables x, y of integers. There are only six different ways to use quantification to turn this predicate into a statement (why six but not four or eight, understand this firstly). Find all of these six statements and determine the truth or falsehood of each.
- 2. Write the negation of the following statements:
 - **a.** For every positive real number ε , there exists a positive real number δ such that for all real numbers x, if $|x 3| < \delta$, then $|(x^2 2) 7| < \varepsilon$.
 - **b.** For all integers x, if x is an odd integer, then x^2 is an odd integer.
 - **c.** For every positive real number a, there exists a positive real number x such that $x^2 = a$.
- 3. Reformulate each of the following theorems in the form p → q. (The statements of the theorems as given below are commonly used in mathematics courses, they are not necessarily the best possible ways to state these theorems.)
 - **a.** The area of the region inside a circle of radius r is πr^2 .
 - **b.** Given a line ℓ and a point P not on ℓ , there exists exactly one line ℓ' containing P that is parallel to ℓ .
 - c. (Fundamental Theorem of Calculus) Let f be a continuous function on [a, b], and let F be any function for which F'(x) = f(x). Then

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

4. Remember that for a real number x, the *absolute value* of x is defined by

$$|x| = \begin{cases} x, & ifx \ge 0\\ -x, & ifx < 0 \end{cases}$$

Let a and b be real numbers. Prove the following statements:

a. |-a| = |a|. **b.** $|a|^2 = a^2$. **c.** |ab| = |a||b|. 5. Remember that for two integers a and b, not both zero, their greatest common divisor gcd(a, b) can be expressed as a linear combination of a and b:

gcd(a, b) = sa + tb for some $s, t \in \mathbb{Z}$.

Such s and t can be found using *Euclidean Algorithm*. Also recall that two nonzero integers a and b are called *relatively* prime if gcd(a, b) = 1.

Use these facts to prove that for $n \in \mathbb{Z}^+$ and $a \in \mathbb{Z}$, there exists a' satisfying $a'a \equiv 1 \pmod{n}$ if and only if a and n are relatively prime.

Due Date: October 31, 2014 (at 12:00).