IUE – MATH 103 – Fundamentals of Mathematics

 $1^{\rm st}$ Midterm — November 5, 2014 — 11:00 - 12:50

Name: _____

ID #: _____

Q1	Q2	Q3	Q4	TOTAL
25	25	25	25	100

Important: Show all your work. Answers without sufficient explanation might <u>not</u> get full credit. Be neat.

Signature: _____

GOOD LUCK!

1. Briefly explain the following terms:

- a) commutative (operation),
- **b)** associative (operation),
- c) well ordering principle,
- d) tautology,
- e) contrapositive.

Solution:

a) + is a commutative binary operation on \mathbb{R} since for all $a, b \in \mathbb{R}$,

a+b=b+a.

 \cdot is a commutative *binary operation* on \mathbb{R} since for all $a, b \in \mathbb{R}$,

$$a \cdot b = b \cdot a$$

b) + is a associative *binary operation* on \mathbb{R} since for all $a, b, c \in \mathbb{R}$,

$$(a+b) + c = a + (b+c).$$

· is a associative binary operation on \mathbb{R} since for all $a, b, c \in \mathbb{R}$,

$$(a \cdot b) \cdot c = a \cdot (b \cdot c).$$

- c) WOP: Any nonempty subset of whole numbers has a smallest element.
- d) A statement whose truth table values are all true is called a tautology.

e) The contrapositive of a statement $p \to q$ is defined as $\neg q \to \neg p$.

2. Take the negation of the following compound statements.

- a) There is a function whose graph intersects the x-axis.
- **b)** $\forall a \in \mathbb{R}, \exists ! b \in \mathbb{R} : a + b = 0.$

Solution:

- a) The statement is p: There is a function f such that f(x) = 0 for some $x \in \mathbb{R}$. The negation of the statement is $\neg p$: For all function f and for all $x \in \mathbb{R}$, $f(x) \neq 0$.
- b) The statement is $n: (\forall a \in \mathbb{R} \ \exists b \in \mathbb{R} \ : \ a + b = 0) \land [(\forall a \in \mathbb{R} \ \exists b \in \mathbb{R} \ \ \exists b \in \mathbb{R} \ \exists b \in \mathbb{R} \ \ a \in \mathbb{R$
 - $p: (\forall a \in \mathbb{R}, \ \exists b \in \mathbb{R} \ : \ a+b=0) \land [(\forall a \in \mathbb{R}, \ \exists b, b' \in \mathbb{R} \ : \ a+b=0 \land a+b'=0) \rightarrow b=b'].$
 - The negation of the statement is

 $\neg p: (\exists a \in \mathbb{R} : \forall b \in \mathbb{R}, a+b \neq 0) \lor (\forall a \in \mathbb{R}, \exists b, b' \in \mathbb{R} : b \neq b'. a+b = 0, a+b'=0)$

- **3.** a) Find the greatest common divisor of 5767 and 5609.
 - **b)** Find $m, n \in \mathbb{Z}$ such that 181m + 113n = 1.

Solution:

a) By Euclidean algorithm,

```
5767 = 1 \cdot 5609 + 158

5609 = 35 \cdot 158 + 79

158 = 2 \cdot 79 + 0.
```

- the last nonzero remainder 79 is gcd(5767, 5609).
- **b)** By Euclidean algorithm, we have
 - $181 = 1 \cdot 113 + 68$ $113 = 1 \cdot 68 + 45$ $68 = 1 \cdot 45 + 23$ $45 = 1 \cdot 23 + 22$ $23 = 1 \cdot 22 + 1$ $22 = 22 \cdot 1 + 0.$

Then

68 = 181 - 113 45 = 113 - 68 = 2.113 - 181 $23 = 68 - 45 = 2 \cdot 181 - 3 \cdot 113$ $22 = 45 - 23 = 5 \cdot 113 - 3 \cdot 181$ $1 = 23 - 22 = 5 \cdot 181 - 8 \cdot 113.$

Hence m = 5 and n = -8.

4. Prove or disprove:

If p is stronger than q, then $q \to r$ is stronger than $p \to r$.

Solution: Suppose that p is stronger than q. Then $p \to q$ is a tautology while $q \to p$ is not. Since $\neg q \to \neg p$ is equivalent to $p \to q$, $\neg q \to \neg p$ is a tautology while $\neg p \to \neg q$ is not. So, $\neg q$ is stronger than $\neg p$. Therefore, $\neg q \lor r$ is stronger than $\neg p \lor r$. Since $\neg p \lor r$ is equivalent to $p \to r$, we obtain that $q \to r$ is stronger than $p \to r$.