IUE – MATH 103 – Fundamentals of Mathematics

 2^{nd} Midterm — December 10, 2014 — 11:00 - 12:50

Name: _____

ID #: _____

Q1	Q2	Q3	Q4	TOTAL
25	25	25	25	100

Important: Show all your work. Answers without sufficient explanation might <u>not</u> get full credit. Be neat.

Signature: _____

GOOD LUCK!

- 1. Briefly explain the following terms about a relation on a set:
 - a) reflexive,
 - **b)** symmetric,
 - c) antisymmetric,
 - d) transitive,
 - e) total.

Solution: Let A be a set and \Re be a relation on A.

- a) \Re is reflexive if $a\Re a$ for all $a \in A$.
- **b)** \Re is symmetric provided that for all $a, b \in A$, if $a\Re b$, then $b\Re a$.
- c) \Re is antisymmetric provided that for all $a, b \in A$, if $a\Re b$ and $b\Re a$, then a = b.
- **d**) \Re is transitive provided that for all $a, b, c \in A$, if $a\Re b$ and $b\Re c$, then $a\Re c$.
- e) \Re is total if for all $a, b \in A$, either $a\Re b$ or $b\Re a$.

2. Prove by PMI (principle of mathematical induction) that for any $n\geq 2$

$$(1-\frac{1}{2})(1-\frac{1}{3})\cdots(1-\frac{1}{n})=\frac{1}{n}.$$

Solution:

Initial step: For n = 2, (1 - 1/2) = 1/2, so the equation holds for n = 2. Induction step: Suppose that

$$(1-\frac{1}{2})(1-\frac{1}{3})\cdots(1-\frac{1}{k}) = \frac{1}{k}.$$

We will show that the equation holds for k + 1. By the induction assumption,

$$(1-\frac{1}{2})(1-\frac{1}{3})\cdots(1-\frac{1}{k})(1-\frac{1}{k+1})$$

is equal to

$$\frac{1}{k} \left(1 - \frac{1}{k+1} \right) = \frac{1}{k} \left(\frac{k}{k+1} \right) = \frac{1}{k+1}.$$

Hence, the equation satisfies for all $n \geq 2$.

Solution:

List Method: Any equivalence relation on A is reflexive. Thus, any list of equivalence relations on A must contain (w, w), (x, x), (y, y), (z, z). Note that the relation $R_0 = \{(w, w), (x, x), (y, y), (z, z)\}$ is also symmetric and transitive. So, it is an equivalence relation which consists of elements in the smallest number. Then the other equivalence relations:

$$\begin{aligned} R_1 &= R_0 \cup \{(x, y), (y, x)\}, \\ R_2 &= R_0 \cup \{(x, z), (z, x)\}, \\ R_3 &= R_0 \cup \{(x, w), (w, x)\}, \\ R_4 &= R_0 \cup \{(x, w), (w, x)\}, \\ R_5 &= R_0 \cup \{(y, w), (w, y)\}, \\ R_5 &= R_0 \cup \{(z, w), (w, y)\}, \\ R_6 &= R_0 \cup \{(z, w), (w, z)\}, \\ R_7 &= R_1 \cup R_6, \\ R_8 &= R_2 \cup R_5, \\ R_9 &= R_3 \cup R_4, \\ R_{10} &= R_1 \cup R_4 \cup R_2, \\ R_{11} &= R_1 \cup R_5 \cup R_3, \\ R_{12} &= R_2 \cup R_6 \cup R_3, \\ R_{13} &= R_4 \cup R_5 \cup R_6, \\ R_{14} &= R_7 \cup R_8 \cup R_9, \end{aligned}$$

Second Method: Let $\mathcal{F} = \{B\}$ be a partition on A. For $a, b \in A$, define $a \Re b$ if there exists $B \in \mathcal{F}$ such that $a, b \in B$.

This is clearly reflexive and symmetric. Moreover, it is transitive because if $a\Re b$ and $b\Re c$, then there exist $B, B' \in \mathcal{F}$ such that $a, b \in B$ and $b, c \in B'$. But \mathcal{F} is a partition of A. So, B = B'. Thus, \Re is an equivalence relation on A. Since any equivalence relation corresponds to such a relation, it describes all equivalence relations on A.

4. Prove or disprove:

$$A - (B \cup C) = (A - B) \cap (A - C)$$

Solution:

$$A - (B \cup C) = A \cap (B \cup C)^c$$
$$= A \cap (B^c \cap C^c)$$
$$= (A \cap B^c) \cap (A \cap C^c)$$
$$= (A - B) \cap (A - C).$$