IUE – MATH 103 – Fundamentals of Mathematics

 $1^{\rm st}$ Midterm — November 7, 2013 — 16:00 - 17:50

Name: _____

ID #: _____

Q1	Q2	Q3	Q4	TOTAL
	25	<u> </u>		100
25	25	25	25	100

Important: Show all your work. Answers without sufficient explanation might <u>not</u> get full credit. Be neat.

Signature: _____

GOOD LUCK!

- 1. Compare the following statements and conclude whether they are equivalent or one of them is stronger than the other.
 - a) $(p \to q) \land (q \to r)$ $(p \to r)$,
 - **b)** $(p \wedge q) \rightarrow r$ $(p \wedge \neg r) \rightarrow \neg q$.

Solution:

- a) If $(p \to q) \land (q \to p)$ is TRUE, then both $p \to q$ and $q \to p$ are TRUE. Therefore, whenever p is TRUE, q must be TRUE, and hence r must be TRUE. Thus $p \to r$ is TRUE. I.e., $[(p \to q) \land (q \to r)] \to (p \to r)$ is a tautology showing that the first compound statement is STRONGER. Moreover, this strength is strict since when p & r are TRUE and q is FALSE, the stronger statement becomes FALSE but the weaker is TRUE. Hence, they are not equivalent.
- **b)** $p \land q \to r \Leftrightarrow \neg (p \land q) \lor r$ $\Leftrightarrow \neg p \lor \neg q \lor r \Leftrightarrow (\neg p \lor r) \lor \neg q$ $\Leftrightarrow \neg (p \land \neg r) \land \neg q \Leftrightarrow (p \land \neg r) \to \neg q$ \therefore They are Equivalent.

2. Take the negation of the following compound statements.

a) $(\exists m \in A)(\forall x \in A)(x \le m),$ b) There exist $M_1, M_2 \in \mathbb{R}$ such that $M_1 \le x \le M_2$ for all $x \in S$.

Solution:

- a) $(\forall m \in A)(\exists x \in A)(x > m)$ b) $(\forall M_1, M_2 \in R)(\exists x \in S)(x < M_1 \lor x > M_2)$

3. a) Write the definition of a greatest common divisor of two nonzero integers.
b) Find m, n ∈ Z such that 33m + 35n = 1.

Solution:

a) Let a and b be two non zero integers. A positive integer d is called gcd if

i) $d|a \wedge d|b$ ii) $e|a \wedge e|b \rightarrow e|d$

b) 35 = 1.33 + 2 $33 = 16.2 + 1 \rightarrow \text{gcd} = 1$ 1 = 33 - 16.2 = 33 - 16(35 - 33) = 17.33 - 16.35Thus m = 17, n = -16.

4. Prove or disprove:

For any sets A, B, C, we have,

$$A \cap C = B \cap C \land A \cup C = B \cup C \quad \rightarrow \quad A = B.$$

Solution:

We will prove the result. $A \subseteq B$: Let $x \in A$. Then $x \in A \cup C = B \cup C \rightarrow x \in B \cup C$ if $x \in B$, we are done. if $x \in C$, then $x \in A$ and $x \in C$ $\rightarrow x \in A \cap C = B \cap C \rightarrow x \in B \cap C$ $\rightarrow x \in B$. Hence $A \subseteq B$. $B \subseteq A$: Similar to above.