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Ranked Set Sampling

Select k units at random from a specified population.
Rank these k units with some expert judgment without measuring
them.
Retain the smallest judged unit and return the others.
Select the second k units and retain the second smallest unit
judged.
Continue to the process until k ordered units are measured.

Note: These k ordered observations X[1]i , ...,X[k ]i are called a cycle.
Note: Process repeated i = 1, · · · ,n cycle to get nk observations.
These nk observations are called a standard ranked set sample.
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Ranked Set Sampling

Diagram

Let k=4 and n=3

Judgment Rank
Cycle 1 2 3 4

X[1]1 . . .
1 . X[2]1 . .

. . X[3]1 .

. . . X[4]1
X[1]2 . . .

2 . X[2]2 . .
. . X[3]2 .
. . . X[4]2

X[1]1, · · · ,X[4]3 is called a
ranked set sample.

For each fully measured
unit, we need k − 1
additional units for ranking.
Measured units are all
independent.
Under a stable ranking
condition, observations
from the same judgment
class are identically
distributed.
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Motivation

Motivating Examples: One-Sample Problem

Let X[i]j , j = 1, · · · ,ni , i = 1, · · · , k be a ranked set sample from
distribution F with unique median θ.
We wish to test H0 : θ = 0 against HA : θ 6= 0.
A natural nonparametric test statistic for this test is the sing
statistic, S+ =

∑k
i=1

∑ni
j=1 I(X[i]j > 0).

Exact null distributing of S+ involves the convolution of binomial
random variables with success probabilities F[i](0).
Under perfect ranking F[i](0), i = 1, · · · , k are equal to incomplete
beta function and the exact null distribution of S+ can be
computed.
Under imperfect ranking, the size of the test is inflated and the
coverage probability of the median confidence interval is deflated.
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Motivation

Estimated type I error rates of the signs test and coverage probabilities
of the median confidence interval

k n ρ = 0.5 ρ = 0.75 ρ = 1.00
2 5 0.080(0.915) 0.070(0.929) 0.051(0.952)

7 0.079(0.921) 0.075(0.926) 0.050 (0.954)
3 5 0.112(0.888) 0.091(0.909) 0.047(0.952)

7 0.102(0.876) 0.084(0.919) 0.053(0.952)
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Motivation

Motivating Examples: Two-sample problem
Suppose that we wish to test the location shift between F (y) and
G(y) = F (y −∆). H0 : ∆ = θx − θy = 0 against HA : ∆ 6= 0.
Assume that we have two data sets, one based on a SRS and the
other based on a RSS.
Let T̄SRS and T̄BW be the rank-sum statistics based on SRS and
RSS data.
The statistic T̄SRS is distribution-free under null hypothesis and its
null variance is 1/(12λ(1− λ)).
The limiting null distribution of T̄BW is normal with mean zero and
variance

σ2
BW = ξ1,0/λ+ ξ0,1/(1− λ)

ξ0,1 = 1/3− 1
k

k∑
i=1

{∫
F[i](y)dF (y)

}2

ξ1,0 = 1/3− 1
q

q∑
i=1

{∫
F[i](y)dF (y)

}2
.
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Motivation

Two-sample problem– Continued

Under perfect ranking, ξ0,1 = 1/3− (2k + 1)/(6(k + 1)) and
ξ1,0 = 1/3− (2q + 1)/(6(q + 1)).
Under perfect ranking, N = M k = q, TRSS is more efficient than
TSRS

eff (TSRS,TRSS) =
6(k + 1)

12
.

The efficiency is 1,1.5,2.0,2.5,3.0,3.5 when k = 1,2,3,4,5,6.
Under imperfect ranking size of the test is inflated.
Coverage probabilities of the confidence interval of the shift
parameter are deflated.
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Motivation

Type I error rates and coverage probabilities
k n ρ = 0.5 ρ = 0.75 ρ = 1.00
2 4 0.116(0.894) 0.091(0.917) 0.066(0.947)

6 0.106(0.887) 0.078(0.915) 0.052(0.944)
8 0.111(0.903) 0.084(0.920) 0.061(0.942)
10 0.111(0.894) 0.079(0.917) 0.053(0.950)
12 0.103(0.900) 0.081(0.922) 0.051(0.946)

3 4 0.139(0.858) 0.115(0.891) 0.065(0.949)
6 0.139(0.847) 0.107(0.882) 0.054(0.947)
8 0.151(0.856) 0.115(0.896) 0.050(0.951)
10 0.145(0.860) 0.115(0.890) 0.051(0.951)
12 0.142(0.852) 0.107(0.898) 0.053(0.947)

5 4 0.229(0.780) 0.163(0.829) 0.052(0.944)
6 0.221(0.776) 0.167(0.833) 0.059(0.947)
8 0.211(0.781) 0.172(0.838) 0.053(0.949)
10 0.216(0.776) 0.161(0.840) 0.050(0.944)
12 0.225(0.787) 0.159(0.848) 0.056(0.952)
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Motivation

Question:

What should we do when we have ranking error?

Use balanced ranked set sampling if possible.
Use robust procedures against imperfect ranking.
Use a ranking model to explain ranking mechanism.
Estimate this ranking model and use it to calibrate the tests and
confidence intervals.
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Ranking Model

Bohn-Wolfe Model (Bohn and Wolfe,1994 and Frey,
2006)
Bohn-Wolfe Model (Bohn and Wolfe,1994 and Frey, 2006)

F[i](y) =
k∑

s=1

ps,iF(s)(y), i = 1, · · · , k ,

where 0 ≤ ps,i ≤ 1 is the probability that the s-th smallest unit is
assigned a judgment rank i .

The matrix (p)s,i defines a stochastic matrix.
The quality of judgment ranking is controlled by ps,i .
Identity matrix defines a perfect ranking.
The entries ps,i = 1/k , s, i = 1, · · · , k define a random ranking.
Estimate ps,i and use it to draw inference.
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Ranking Model

Dell-Clutter Model (Dell and Clutter, 1972, David and
Levine, 1972)

Dell-Clutter Model (Dell and Clutter, 1972, David and Levine, 1972)

The true value of a unit, Xi , in a set is modeled through its
perceived value Ui = Xi + εi , where εi are iid draws from a suitably
chosen distribution.
The sets of (Xi ,Ui), i = 1, · · · , k , are ranked with respect to the
second component (X[i],U(i)) and the first components are taken
as judgment ranked order statistics.
The quality of ranking is controlled by the noise variable ε.
Monotone Likelihood Ratio model (Fligner and MacEachern,
2006):
Ranking is performed based on monotone likelihood ratio
principal.
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Ranking Model

Estimation of Bohn-Wolfe Model

Let X[i]j , i = 1, · · · , k ; j = 1, · · · ,n be a ranked set sample from a
distribution F and F̂[i](y) be the empirical cdf of F[i].
Let z(1) < ... < z(N) be the ordered values of X[i]j . Define
u[i]j = F̂[i](zj), j = 1, · · · ,N.
The distance between the Bohn-Wolfe model and the data can be
measured

D(P) =
N∑

j=1

k∑
i=1

(u[i]j −
k∑

s=1

ps,iBs,k+1−s(u[i]j))2, (1)

where Ba,b(u) is the incomplete beta function.
The number of unknown parameters in P is M = (k − 1)k/2. Let
P∗ denote these unknown parameters.
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Ranking Model

With appropriate notation, the distance function 1 can be written
as

D(P∗) = ||Y − CP∗||2,

where Y and C are known kN dimensional vector and kM ×M
dimensional matrix, respectively.
Estimator: We use the minimizer of D(P∗) to estimate the
Bohn-Wolfe model

P̂∗ = (C>C)−1C>Y .

This estimatorv, with direct minimization, may not produce a
stochastic matrix. Hence, the estimated ranking model may not be
a valid probability model.
We use constraint quadratic minimization.
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Ranking Model

Constraint Quadratic Minimization

We minimize D(P∗) with repect to P∗ subject to constraint:
I Constraint 1: pi,j ≥ 0 for i , j = 1, · · · , k .
I Constraint 2: pi,j ≤ 1 for i , j = 1, · · · , k .
I Constraint 3: sum in each row (and also column) must be equal to

one,
∑k

j=1 pi,j = 1 and
∑k

i=1 pi,j = 1.

For this minimization, we can use solve.QP function in R-library
quadprog.
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Performance of Estimator

Performance of the Estimator
Consider three different models:

For k = 2

P1 =

(
0.99 0.01
0.01 0.99

)
, P2 =

(
0.90 0.1
0.1 0.90

)
,

P3 =

(
0.75 0.25
0.25 0.75

)
.

For k = 2

P1 =

 .99 .005 .005
.005 .99 .005
.005 .005 .99

 ,P2 =

 .90 .07 .03
.07 .86 .07
.03 .07 .90

 ,

P3 =

 0.75 0.15 0.10
0.15 0.70 0.15
0.10 0.15 0.75

 .
Omer Ozturk (OSU) Ranking Error
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Performance of Estimator

The estimate of judgment ranking probability p1,1,
k = 2
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Performance of Estimator

The estimate of judgment ranking probabilities,
p1,1,p1,2,p2,2, k = 3
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Performance of Estimator

Estimation of judgment class CDF F[i]

Assume that the cdf of the underlying distribution F is known.
From Bohn-wolfe model Judgment class CDF can be estiamted by

F̂[i](y) =
k∑

j=1

p̂i,jF(i)(y), i = 1, · · · , k .

p̂i,j are the estimates from Bohn-wolfe model.
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Performance of Estimator
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Nonparametric Estimate of Judgment Ranking Model

Nonparametric Estimate of F[i] (Ozturk, 2007)
Let F[i](y), i = 1, · · · , k , be judgment class distributions in a
ranked-set sample.
Any sensible ranking model induces a stochastic ordering
between judgment class distributions

F[1](y)
st
≤ F[2](y)

st
≤ · · ·

st
≤ F[k ](y).

Let X[i]j , i = 1 · · · , k , j = 1, · · · ,ni , be a ranked set sample from a
distribution F and and let F̂[i](y) be the empirical cdf of F[i](y),

F̂[i](y) =
1
ni

ni∑
j=1

I(X[i]j ≤ y),

where I() is the indicator function.
Empirical cdf estimator of F[i](y) does not satisfy this stochastic
order restriction.
Question: How do we estimate F[i](y), i = 1, · · · , k?
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Nonparametric Estimate of Judgment Ranking Model

Stochastic Ordering Estimator
Let z(1) ≤ z(2) ≤ · · · ≤ z(N) be the ordered values of
X[i]j , j = 1, · · · ,ni ; i = 1, · · · , k , φ[i]j = F[i](z(j)) and
φ = (φ[1]1, · · · , φ[k ]N).
To find an estimator we want to minimize

D(φ) =
k∑

i=1

1
ni

ni∑
j=1

{φ[i]j − F̂[i](z(j)}2

subject to constraints

φ[i]1 ≤ φ[i]2 ≤ · · · ≤ φ[i]N (2)
φ[1]j ≥ φ[2]j ≥ · · · ≥ φ[k ]j . (3)

Let C be the set of real numbers that satisfy the inequalities (2)
and (3). Then our estimator is defined as

D(φ̂) = min
φ∈C

D(φ). (4)

There exist a minimizing set φ̂ ∈ C.
Omer Ozturk (OSU) Ranking Error
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Nonparametric Estimate of Judgment Ranking Model

Estimator–Continued

The estimator can be written in a closed form

F ∗[i](z(j)) = φ̂[i]j = min
1≤r≤i

max
i≤s≤k

Brs(j),

where Brs(j) =

∑s
u=r nu F̂[u](z(j))∑s

u=r nu
.

Under some regularity conditions, F ∗[i](t) uniformly converges
almost surely to F[i](t), i = 1, · · · , k .
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Nonparametric Estimate of Judgment Ranking Model

Performance of the Estimator

The proposed estimator satisfies the stochastic order restriction.
Both empirical cdf and the new estimators are uniformly
consistent for F[i](t). Thus, we expect that both estimators satisfy
the stochastic order restriction for large sample sizes.
For small sample sizes, empirical cdf estimator may violate the
stochastic order restriction. In this case, the proposed estimator
combines the data across judgment classes where the violation
occurs, so we expect it to perform better.
For small sample sizes, the new estimator has smaller IMSE
(Integrated mean square error).
The proposed estimator has smaller MSE than the empirical cdf
estimators.
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Nonparametric Estimate of Judgment Ranking Model

Efficiency of the estimators, R1 = I(E)/I(N), R2 = I(E)/I(BW ),
R3 = I(N)/I(BW ).

ρ = 1 ρ = .075
k n i R1 R2 R3 R1 R2 R3

2 5 1 1.038 8.960 8.368 1.099 6.173 5.616
7 1 1.023 9.329 9.115 1.079 5.975 5.539
10 1 1.011 9.238 9.134 1.058 5.444 5.146

3 5 1 1.057 7.025 6.645 1.169 4.479 3.833
2 1.128 5.398 4.784 1.337 4.263 3.187

7 1 1.035 6.872 6.642 1.126 4.346 3.859
2 1.084 5.289 4.879 1.270 3.853 3.033

10 1 1.023 6.391 6.244 1.095 3.873 2.827
2 1.051 5.149 4.897 1.198 3.386 2.827

5 5 1 1.070 4.897 4.578 1.229 2.356 1.917
2 1.209 2.719 2.249 1.563 2.349 1.502
3 1.257 2.493 1.983 1.700 2.438 1.434

10 1 1.034 4.429 4.282 1.143 2.242 1.961
2 1.103 2.320 2.104 1.401 2.087 1.489
3 1.133 2.119 1.870 1.490 2.539 1.703
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Applications

Two-Sample Problem
Center X[i]j and Y[i]j by subtracting their median. Let
Z[i]j , j = 1, · · · ,ni + mi be the combined centered X - and
Y -observations from the i-judgment class distributions,
i = 1, · · · , k .
We estimate ξ0,1 with

ξ̂N
0,1 =

1
3
− 1

k

k∑
i=1


N∑

j=1

F̂[i](z(j))dF̂ (z(j))


2

ξ̂BW
0,1 = 1/3− 1

k

k∑
i=1


k∑

s=1

p̂s,i
k + 1− i

k + 1


2

We estimate ξ1,0 and σRSS in a similar fashion.

We use the test statistics T̂BW =
√

N+M{T̄−1/2}
σ̂BW

,

T̂N =
√

N+M{T̄−1/2}
σ̂N

We expect that T̂BW and T̂N have an approximate t-distribution
with nk + mq − 2 degrees of freedom.Omer Ozturk (OSU) Ranking Error
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Applications

Estimated Type I error rates. B1- truncated Bown-Wolfe model, B2- Un-truncated BW
model, N-nonparametric, P-perfect ranking.

ρ = 0.75 ρ = 1.00
k n B1 B2 N P B1 B2 N P
2 4 .036 .054 .052 .096 .024 .061 .067 .062

6 .044 .051 .050 .080 .031 .057 .053 .051
10 .047 .049 .054 .079 .034 .047 .062 .047
12 .045 .047 .052 .081 .042 .054 .049 .055

3 4 .051 .061 .062 .117 .033 .066 .067 .057
6 .053 .055 .054 .115 .036 .061 .059 .052
10 .052 .052 .057 .112 .037 .054 .053 .051
12 .043 .045 .051 .101 .040 .057 .056 .052

5 4 .071 .069 .062 .167 .033 .067 .067 .053
6 .059 .056 .056 .169 .034 .060 .066 .054
10 .050 .053 .058 .159 .038 .058 .056 .055
12 .051 .053 .050 .153 .033 .052 .050 .049
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Applications

Estimated coverage probabilities. B1- truncated Bown-Wolfe model, B2-
Un-truncated BW model, P-perfect ranking.

ρ = 0.75 ρ = 1.00
k n B1 B2 P B1 B2 P
2 4 96.2 94.6 91.7 97.2 93.4 94.7

6 95.8 95.0 91.5 96.9 94.2 94.4
10 95.3 95.1 91.7 96.6 95.3 95.0
12 95.4 95.2 92.2 95.9 94.6 94.6

3 4 95.0 93.9 89.0 96.7 93.5 94.9
6 94.7 94.5 88.2 96.4 94.1 94.7
10 94.8 94.8 89.0 96.4 94.6 95.1
12 95.7 95.4 89.8 96.0 94.3 94.7

5 4 92.9 93.0 82.9 96.9 93.3 94.4
6 94.7 94.5 88.2 96.6 94.1 94.7
10 95.0 94.7 84.0 96.2 94.2 94.4
12 94.9 94.7 84.8 96.6 94.8 95.2
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Applications

One-Sample Problem
Let X[i]j , j = 1, · · · ,ni , i = 1, · · · , k be a ranked set sample from
distribution F with unique median θ.
We wish to test H0 : θ = 0 against HA : θ 6= 0.
A natural nonparametric test statistic for this test is the sign
statistic, S+ =

∑k
i=1

∑ni
j=1 I(X[i]j > 0).

Exact null distributing of S+ involves the convolution of binomial
random variables with success probabilities F[i](0).
Under perfect ranking F[i](0), i = 1, · · · , k are equal to incomplete
beta function and the exact null distribution of S+ can be
computed.
Under imperfect ranking, F[i](0), i = 1, · · · , k need to be estimated
with F̂[i](0), i = 1, · · · , k .
With estimated F[i](0), i = 1, · · · , k , the size of the sing test is
stable under imperfect ranking.
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Applications

Estimated type I error rate of the sing test
k n Est. ρ = 0.5 ρ = 0.75 ρ = 1.00
2 5 BW1 0.058 0.055 0.042

BW2 0.068 0.066 0.057
P 0.082 0.070 0.051

2 7 BW1 0.056 0.057 0.045
BW2 0.060 0.068 0.058

P 0.079 0.075 0.050
3 5 BW1 0.066 0.064 0.040

BW2 0.071 0.073 0.060
P 0.112 0.091 0.047

3 7 BW1 0.057 0.058 0.045
BW2 0.060 0.062 0.063

P 0.102 0.084 0.053
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Applications

Estimated coverage probabilities of the median confidence interval
k n Est. ρ = 0.5 ρ = 0.75 ρ = 1.00
2 5 BW1 94.0 94.6 95.9

BW2 93.3 93.9 94.6
P 91.5 92.9 95.2

2 7 BW1 94.4 94.2 95.9
BW2 94.0 93.3 94.7

P 92.1 92.6 95.4
3 5 BW1 93.8 94.1 96.4

BW2 93.4 93.3 95.0
P 88.8 90.9 95.2

3 7 BW1 94.6 94.7 96.2
BW2 94.5 93.9 94.2

P 87.6 91.9 95.2
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Example

Example
An experiment is conducted to test if there is a difference in two
spreader settings in in a horticultural experiment.
The response variable is the percentage area covered by spray
deposit on the leaf’s upper surface area of apple trees.
Precise measurement of response is expensive and time
consuming with respect to cost of a visual inspection under
ultraviolet light.
Two ranked set samples are collected, one from low spreader
settings (A) the other from the high spreader settings (B).
We wish to test H0 : µL − µH = 0 against HA : µL − µH 6= 0 by
using rank-sum statistics.
The judgment class distributions are estimated under stochastic
order restriction.
The quantity ξ0,1 = ξ0,1 is estimated ˆξ0,1 = 0.0277. The test
statistic T̂ = 3.635 and the the P-value is 0.00023. Thus, we
reject the null hypothesis.
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Example

Rank Low-volume
Cycle 1 2 3 4 5

1 0.3 2.8 24.4 5.7 14.3
2 3.9 11.9 12.6 10.5 56.5
3 3.4 11.8 13.0 21.8 29.6
4 5.1 10.4 19.3 21.0 15.0
5 3.2 14.1 13.0 25.0 22.9
6 6.9 7.0 26.0 22.5 28.5
7 10.0 9.1 24.4 13.0 34.7
8 1.2 9.6 6.9 37.3 13.3
9 4.6 6.0 12.6 22.3 27.3

10 2.8 8.3 10.8 21.2 26.1
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Conclusion

We introduced two estimators for the quality of ranking information
in a ranked set sample.
These estimators are used to reduce the effect of imperfect
ranking in one and two sample nonparametric statistical
procedures.
These estimated models can easily be extended to other
statistical procedures to calibrate the impact of imperfect ranking.
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