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Experimental unit information: Subjective, objective

Subjective versus objective information

In many scientific investigations, the investigators have a wealth of
information on potential experimental units. This information can
be categorized into two classes
I: Well-defined, numerically quantifiable information: We use
model based approach to analyze this type of information.
II: Not-well defined, subjective, incomplete information: It is not
clear how we use this kind of information in statistical analysis.
One of the technique used in the analysis of subjective
information is called Ranked Set Sampling, introduced by
McIntyre (1954) and republished in (2005).
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Experimental unit information: Subjective, objective

Standard Ranked Set Sampling

Select k units at random from a specified population.
Rank these k units with some expert judgment without measuring
them.
Retain the smallest judged unit and return the others.
Select the second k units and retain the second smallest unit
judged.
Continue to the process until k ordered units are measured.
Note: These k ordered observations X(1)i , ...,X(k)i are called a
cycle.
Note: Process repeated i = 1, · · · ,n cycle to get nk observations.
These nk observations are called a standard ranked set sample.
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Experimental unit information: Subjective, objective

Diagram
Let k = 4 and n = 2.

Judgment Rank
Cycle 1 2 3 4

X[1]1 X[2]1 X[3]1 X[4]1
1 X[1]1 X[2]1 X[3]1 X[4]1

X[1]1 X[2]1 X[3]1 X[4]1
X[1]1 X[2]1 X[3]1 X[4]1
X[1]2 X[2]2 X[3]2 X[4]2

2 X[1]2 X[2]2 X[3]2 X[4]2
X[1]2 X[2]2 X[3]2 X[4]2
X[1]2 X[2]2 X[3]2 X[4]2

X[1]1, · · · ,X[4]2 is called a
ranked set sample.

For each fully measured
unit, we need k − 1
additional units for ranking.
Measured units are all
independent.
Under a stable ranking
condition, observations
from the same judgment
class are identically
distributed.
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Experimental unit information: Subjective, objective

Why ranked-set sampling?
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Experimental unit information: Subjective, objective

Why Ranked-set Sampling?
Consider a ranked-set sample of size k . For simplicity assume
n = 1.
Let Y1, · · · ,Yk and Y(1)1, · · · ,Y(k)1 denote the simple random and
ranked-set samples, respectively. Then

varSRS(Ȳ ) =
1
k2 var(

k∑
j=1

Y(j)) =
1
k2

k∑
j=1

σ2
(j) +

2
k2

∑∑
i<j
σij

= varRSS(Ȳ ) +
2
k2

∑∑
i<j
σij

varSRS(Ȳ ) ≥ varRSS(Ȳ ).

Variance of a ranked-set sample mean is always less than the
variance of a simple random sample mean.
If the judgment ranking is at random (the worst case scenario),
then varSRS(Ȳ ) = varRSS(Ȳ ).
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Experimental unit information: Subjective, objective

Problems and Concerns in Ranked Set Sampling

Waste of experimental units.
Role of randomizations
Analysis
Appropriate statistical inference
Availability of appropriate software
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Order Restricted Randomized Designs

A Review of Completely Randomized Design

Assume that we have a two-sample problem
Control (C) and treatment (T) regimes.
N available experimental units, N = 12
Objective is to make inference for ∆ = µC − µT .
Randomization: Randomly assign T and C to these N
experimental units.

C T T C
T C C T
C C T T
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Order Restricted Randomized Designs

Order Restricted Randomization

Assume that again we have N available units and let h = 2 be the
set size.
Divide N units randomly to N/2 sets and rank the units within
each set.

pairs 1 2 3
sets 1 2 1 2 1 2

Group these N/2 sets in pairs
pairs 1 2 3
sets 1 2 1 2 1 2

R1 R1 R2 R1 R1 R1
R2 R2 R1 R2 R2 R2
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Order Restricted Randomized Designs

Within each pair (replication) randomly assign C and T to ranked
units in the first set.
Do the opposite assignment in the second set.

1 2 3
1 2 1 2 1 2

R1 R1 R2 R1 R1 R1
C T T T C T
R2 R2 R1 R2 R2 R2
T C C C T C
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Order Restricted Randomized Designs

Illustration of ORR design

1 2
1 2 1 2

R1 R1 R2 R1
Y1[1]11 Y2[1]12 Y2[2]12 Y2[1]22

R2 R2 R1 R2
Y2[2]11 Y1[2]21 Y1[1]12 Y1[2]22

where Yi[j]rt is the response measurement from the i-th treatment, j-th
judgment ranked unit r -th set and the t-th replication. Some naive
estimators for ∆ = µC − µT

ORR design, ∆̂ORR = Ȳ1[.].. − Ȳ2[.]...

RSS design, ∆̂RSS = Ȳ1[.].. − Ȳ2[.]..

SRS design, ∆̂SRS = Ȳ1. − Ȳ2.
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Order Restricted Randomized Designs

Some observations
All three estimators are unbiased

E∆̂RSS = E∆̂ORR = ∆̂SRS = µC − µT .

Variances of these estimators are:

V (∆̂SRS) =
σ2

n/2
+

σ2

n/2
= 2σ2/n

= (σ[11] + σ[22] + 2σ[12])/n

V (∆̂RSS) = (σ[11] + σ[22])/n,

V (∆̂ORR) = (σ[11] + σ[22] − 2σ[12])/n.

Variance reductions:

V (∆̂SRS)− V (∆̂RSS) = 2σ[1,2]/n

V (∆̂RSS)− V (∆̂ORR) = 2σ[1,2]/n
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Order Restricted Randomized Designs

Box plots for the ORR and CRD estimates of ∆
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Order Restricted Randomized Designs

Large Set Sizes h > 2

For simplicity, we again consider two treatment combinations, C
and T. Let set size h ≥ 2.
Select two sets each of size h and rank the units within each set.
For example, for h = 4

Set I R1 R2 R3 R4
Set II R1 R2 R3 R4

Divide ranks within each set into two disjoint sets.

a = {a1, · · · ,ak}, b = {b1, · · · ,bh−k},

where k is the largest integer less than or equal to h/2.
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Order Restricted Randomized Designs

Perform randomization to assign control and treatment regimes to
the units in a or b in set 1.
Do an opposite assignment in the second set.

Control Treatment
a1 · · · ak b1 · · · bh−k

Y1[a1]11 · · · Y1[ak ]11 Y2[b1]11 · · · Y2[bh−k ]11
b1 · · · bh−k a1 · · · ak

Y1[b1]21 · · · Y1[bh−k ]21 Y2[a1]21 · · · Y2[ak ]21

Example: h=4, a = {R1,R3}, b = {R2,R4}.

Set I R1, C R2, T R3, C R4, T
Set II R1, T R2, C R3, T R4, C
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Order Restricted Randomized Designs

Main feature of this design can be summarized as
follows

While responses between sets are all independent, responses
within each set are positively correlated.
All h ranks are used within each treatment regime so that the
design is balanced.
This design is unique for h = 2, but the number of possible
designs increases with h. For a general h, 2h−1 − 1 designs are
possible.
This design is motivated for the inference of the contrast
parameter ∆ = µC − µT .
If h > 2, then the design a = {1,3,5, · · · ,h − 2,h} minimizes the
variance of ∆̂(ORR).
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Order Restricted Randomized Designs

Variance of ∆̂ORR for normal distribution
h a ORR SRS − RSS RSS −ORR
2 {1} 0.727 0.637 0.637
3 {1} 0.825 0.954 0.219

{2} 0.530 0.954 0.515∗

4 {1,2} 0.687 1.178 0.135
{1,3} 0.336 1.178 0.485∗

{1,4} 0.386 1.178 0.437
5 {1,2} 0.732 1.278 -0.010
{1,3} 0.449 1.278 0.273
{1,4} 0.353 1.278 0.369
{1,5} 0.470 1.278 0.252
{2,3} 0.424 1.278 0.298
{2,4} 0.277 1.278 0.445∗

{2,5} 0.353 1.278 0.369
{3,4} 0.424 1.278 0.298
{3,5} 0.449 1.278 0.273
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Two-Sample Model

Inference Based on Means: Two-Sample models,
Ozturk and MacEachern (2005,EES)

Consider testing H0 : ∆ = 0 against HA : ∆ 6= 0.
A natural test statistic for this hypothesis is

Tn =
Ȳ1[.].. − Ȳ2[.]..√

var(∆̂ORR)
.

For large n, Tn has normal distribution.
For small sample sizes, Student’s t-distribution provides a
reasonable approximation to type I error.
By using Student’s t-distribution approximation, we can construct
(1− γ)100% confidence interval for ∆

Ȳ1[.].. − Ȳ2[.].. ± t1−γ/2
2n−2

√
var(∆̂ORR)
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Two-Sample Model

Estimated Type I error rates of TN
Model ρ n PN = 0.05 Pt = 0.05
Normal 1.0 3 0.124 0.051

5 0.081 0.052
10 0.066 0.049
30 0.059 0.054

Normal 0.5 3 0.127 0.054
5 0.086 0.052

10 0.064 0.050
30 0.056 0.052

t5 1.0 3 0.116 0.047
5 0.083 0.045

10 0.060 0.042
30 0.053 0.048

t5 ρ = 0.5 3 0.116 0.044
5 0.091 0.050

10 0.065 0.050
30 0.054 0.050Omer Ozturk (OSU) ORR Dokuz Eylul U 20 / 33



Two-Sample Model

Estimated type I error rates of TN
Model ρ n PN = 0.05 Pt = 0.05

t3 1.0 3 0.099 0.036
5 0.070 0.036
10 0.055 0.040
30 0.051 0.046

t3 0.5 3 0.105 0.040
5 0.073 0.041
10 0.061 0.047
30 0.049 0.045

L. Nor 1.0 3 0.086 0.033
5 0.061 0.030
10 0.049 0.035
30 0.047 0.043

L. Nor 0.5 3 0.088 0.030
5 0.062 0.029
10 0.047 0.030
30 0.055 0.050
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Two-Sample Model

Empirical powers of two sample t-test of ORR design
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Linear models

Inference Based on Means: Linear models

We express the response vector in a linear model structure

Y i = C iβ + σεi , for i = 1, · · · ,n, (1)

where C i is the 2h × p dimensional design matrix, β is the
parameter vector and εi = (ε′i1, ε

′
i2)′ is the residual vector. Note

that each replication contains responses from two different sets,
each of size h.
Let Y = (Y 1, · · · ,Y n). Then the model 1 can be written as

Y = Cβ + σε = µ+ σε,µ ∈ V , (2)

where V is a p-dimensional subspace of RN , N = 2hn

Omer Ozturk (OSU) ORR Dokuz Eylul U 23 / 33



Linear models

The model 2 can be rewritten to highlight differences between the
parameters that are the property of the model and the ranking
mechanism

Y = C1β1 + C2β2 + σε, (3)

where C2 is the design matrix that could account the differences
in means of ranking classes and interaction effects between the
ranking classes and other factors in the experiment.
Under some mild assumptions, we can write

EY = µ, var(Y ) = Γ,

where Γ is a 2hn × 2hn block-diagonal matrix, each block of which
contains Σ that corresponds to var(εi1).
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Linear models

Generalized Linear Model

We transform the model in the following fashion.

Y ∗ = µ∗ + σε∗,

where

Y ∗ = Γ−1/2Y , µ∗ = Γ−1/2µ, ε∗ = Γ−1/2ε. (4)

Let

V ∗ =
{

v∗ = Γ−1/2v ,v ∈ V
}
.

Since Γ is an invertible matrix and V is a p-dimensional subspace
V ∗ is a p-dimensional subspace. Under the transformation 4

EY ∗ = µ∗, µ∗ ∈ V ∗, cov(Y ∗) = σ2I .
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Linear models

Least Square Estimator
We estimate µ∗ with least square estimators from the transformed
model 4 which follows from the projection of Y ∗ onto the space V ∗,

µ̂∗ = PV∗Y ∗,

where PV∗Y ∗ is the projection of Y ∗ onto V ∗.
Let C be a basis matrix for the subspace V . Then X = Γ−1/2C is a
basis matrix for the subspace V ∗.
By using the uniqueness of the projection matrix, we write

µ̂∗ = X (X ′X )−1X ′Y ∗.

Note that µ̂ = Γ1/2µ̂∗ and then

µ̂ = C(C ′Γ−1C)−1C ′Γ−1Y (5)
β̂ = (C ′Γ−1C)−1C ′Γ−1Y (6)

Under model (1), both µ̂ and β̂ are unbiased for µ and β,
respectively.
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Linear models

Estimate of the Variance

(N − p)σ̂2 = ||PV∗⊥Y ∗||2

= ||PV∗⊥(µ∗ + ε∗)||2 = ||PV∗⊥ε
∗||2

= ||Y ∗||2 − ||µ̂∗||2

In terms of the original model, this reduces to

(N − p)σ̂2 = (Y − µ̂)′Γ−1(Y − µ̂)
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Linear models

Hypothesis Testing

Let W be a q-dimensional subspace of V , where q ≤ p.
Then the general linear hypothesis considers testing

H0 : µ ∈W against HA : µ /∈W . (7)

Let W ∗ = {w∗ = Γ−1/2w ; w ∈W}. Then µ∗ ∈W ∗ if and only
µ ∈W . Therefore, testing hypotheses (7) is equivalent to testing

H0 : µ ∈W ∗ HA : µ /∈W ∗. (8)

Then the generalized F -test statistic for the hypothesis (8) has the
form

FN =
||PV∗|W∗Y ∗||2

||PV∗⊥Y ∗||2
× N − p

p − q
. (9)
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Examples

Two treatments
Let

Yi[j]tl = θ + αi + γj + (αγ)i[j] + σεi[j]tl

= µi[j] + σεi[j]tl ,

where Yi[j]tl is the response measurement from the i-th treatment,
j-th judgment class, t-th set and l-th replication.
In this model, we use the usual constraints

2∑
i=1

αi = 0,
2∑

j=1

γj = 0,

2∑
i=1

(αγ)i[j] = 0
2∑

j=1

(αγ)i[j] = 0.

Under these constraints, the subspace V that spans µi[j] has
dimension 4.
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Examples

Generalized Least Squares Estimators
Assume that F is symmetric. Then under some regularity
conditions

θ̂ = Ȳ.[.].., α̂i = (Ȳi[.].. − Ȳ.[.]..); i = 1,2,

γ̂j = (Ȳ.[j].. − Ȳ.[.]..); j = 1,2, α̂γ1[1] = (Ȳ.[.]1. − Ȳ.[.]2.)

The total variation is partitioned as
Source df Sum of Square
Treat 1 SSTR = b

∑2
i=1(Ȳi[.].. − Ȳ.[.]..)2

Jud 1 SSJ = b
∑2

j=1(Ȳ.[j].. − Ȳ.[.]..)2

Int 1 SSI = c
∑2

j=1(Ȳ.[.]j. − Ȳ.[.]..)2

Res N − 3 SSR = SST − SSTR − SSJ
SST = b

4n
∑n

i=1{(Y1[1]1i − Y2[2]1i)
2 + (Y2[1]2i − Y1[2]2i)

2}+
c
∑n

i=1{Y1[1]1iY2[2]1i + Y2[1]2iY1[2]2i}
b = 2n/(σ2

ε (1− ρ)), c = 2n/(σ2
ε (1 + ρ))
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Empirical Power

Empirical Power
Model

Yi[j]tl = θ + αi + γj + (αγ)i[j] + σεi[j]tl , i , j , t = 1,2; l = 1, ...,n

Dell and Clutter (1972) model: Units are ranked based on
estimates of the error terms on each unit,

ui = εi + wi , εi ∼ F ,wi ∼ N(0, τ2)

For our model, a vector of H independent error terms,
ε = (ε1, · · · , εH) is generated from F . Another vector of H
independent random variates, w = (w1, · · · ,wH), is generated
from N(0, τ2).
We add ε and w , u = ε+ w, and sort the vector u. Corresponding
ε values are taken as judgment order statistics.
The information content of judgment ranking in this model is
controlled by the variance of w , or equivalently by the correlation
between u and ε, cor = 1/(1 + τ2)1/2.
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Empirical Power

Empirical power ORR design
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Concluding Remark

Concluding Remarks

Use of EU related subjective information improves statistical
inference in ORR and RSS designs.
ORR designs unlike RSS designs uses all experimental units
available for the study.
For the inference on the contrasting features of factor levels, ORR
design provides improved efficiency over RSS and SRS designs.
Linear model analysis provides a unified theory that can be used
for SRS, RSS and ORR as long as you determine appropriate
covariance structure.
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