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Experimental unit information: Subjective, objective

Subjective versus objective information

@ In many scientific investigations, the investigators have a wealth of
information on potential experimental units. This information can
be categorized into two classes

@ [|: Well-defined, numerically quantifiable information: We use
model based approach to analyze this type of information.

@ II: Not-well defined, subjective, incomplete information: It is not
clear how we use this kind of information in statistical analysis.

@ One of the technique used in the analysis of subjective
information is called Ranked Set Sampling, introduced by
Mclntyre (1954) and republished in (2005).
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Experimental unit information: Subjective, objective

Standard Ranked Set Sampling

@ Select k units at random from a specified population.

@ Rank these k units with some expert judgment without measuring
them.

@ Retain the smallest judged unit and return the others.

@ Select the second k units and retain the second smallest unit
judged.

@ Continue to the process until k ordered units are measured.

@ Note: These k ordered observations X(4y;, ..., Xx); are called a

cycle.
@ Note: Process repeated i = 1,--- | ncycle to get nk observations.
These nk observations are called a standard ranked set sample.
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Experimental unit information: Subjective, objective

Diagram
Letk=4and n=2.

Judgment Rank
Cycle [ 1 2 3 4 @ For each fully measured
X Xep Xap Xyt unit, we need k — 1
1 X Xep Xap Xyt additional units for ranking.
X[1]1 X[2]1 X[3]1 X[4]1 @ Measured units are all
X[1]1 X[2]1 X[3]1 X[4]1 independent.
e Xzl Xz X42 | @ Under a stable ranking
2 12 X Xppe Xgpe condition, observations
M2 X Xpe Xupe from the same judgment
2 X Xpe Xue class are identically
distributed.
X[1]1 E ,X[4]2 is called a

ranked set sample.
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Experimental unit information: Subjective, objective

Why Ranked-set Sampling?

@ Consider a ranked-set sample of size k. For simplicity assume
n=1.

@ Let Yq,---, Ygand Y(y)1, -+, Yx)1 denote the simple random and
ranked-set samples, respectively. Then

’
K2 VaFZYm kz ZU/)+kzzZ,<, i

Jj=1

= vargss(Y k222,</ i

varsps(Y) > vargss(Y).

varsps(Y)

@ Variance of a ranked-set sample mean is always less than the
variance of a simple random sample mean.

o If the judgment ranking is at random (the worst case scenario),
then varsps(Y) = vargss(Y).
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Experimental unit information: Subjective, objective

Problems and Concerns in Ranked Set Sampling

@ Waste of experimental units.

@ Role of randomizations

@ Analysis

@ Appropriate statistical inference

@ Availability of appropriate software
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A Review of Completely Randomized Design

Assume that we have a two-sample problem
@ Control (C) and treatment (T) regimes.
@ N available experimental units, N = 12
@ Objective is to make inference for A = ¢ — pr.

@ Randomization: Randomly assign T and C to these N
experimental units.

C|T|T|C

T|C|C|T

C|C|T|T
Omer Ozturk (OSU) o]31:1
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Order Restricted Randomization

@ Assume that again we have N available units and let h = 2 be the
set size.

@ Divide N units randomly to N/2 sets and rank the units within
each set.

pairs 1 2 3
sets [ 1|2 1]2 112

@ Group these N/2 sets in pairs

pairs 1 2 3
sets | 1 2 1 2 1 2
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Order Restricted Randomized Designs

@ Within each pair (replication) randomly assign C and T to ranked

units in the first set.
@ Do the opposite assignment in the second set.

Omer Ozturk (OSU)
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lllustration of ORR design

1 2
1 2 1 2
R, R, Ro R,
Yippa | Yo Yoepi2 | Yeripee
R R Ry R
Yop11 | Yijzpe Yippz | Yijgpee

where Y, is the response measurement from the /-th treatment, j-th
judgment ranked unit r-th set and the t-th replication. Some naive
estimators for A = uc — pur

® ORR design, Aorr = Vi1 — Yar).-
@ RSSdesign, Aggs = Yij). — Vo).
@ SRS design, Agrs = Y;. — Ya.
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Order Restricted Randomized Designs

Some observations
@ All three estimators are unbiased

EApss = EAopr = Asps = 1ic — ur-

@ Variances of these estimators are:

~ 02 0'2
V(Asgs) = /2 + nz 20%/n
= (op1] + o[22 + 20p12)) /0
V(Agss) = (op1) + o)/,
V(Aorr) = (op11) + opz) — 20712)/1.

@ Variance reductions:

V(Asgs) - V(AHSS) = 2U[1 72]/’7
V(Arss) — V(Aorr) = 2071 21/n
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Box plots for the ORR and CRD estimates of A
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Large Set Sizes h > 2

@ For simplicity, we again consider two treatment combinations, C
and T. Let set size h > 2.

@ Select two sets each of size h and rank the units within each set.
For example, for h =4

Set | R1 Rg Rg R4
Setll | By R> R3 Ry

@ Divide ranks within each set into two disjoint sets.

a:{a‘h"'aak}a b:{b‘lf")bhfk}?

where k is the largest integer less than or equal to h/2.
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Order Restricted Randomized Designs

@ Perform randomization to assign control and treatment regimes to

the units in aor b in set 1.
@ Do an opposite assignment in the second set.

Control Treatment
a ak b; bh—k
Yila11 Yilagi1 | Yo i1 Yorb, 11
by bn_k ay ak
Yi[by21 Yiby 21 | Y2[a 21 Yo[a21
Example: h=4, a = {Ry, Rz}, b= {R>, R4}.
Set | H1, C Rg, T R3, C R4, T
Setll | R, T | R,C | R, T | Ry, C
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Order Restricted Randomized Designs

Main feature of this design can be summarized as
follows

@ While responses between sets are all independent, responses
within each set are positively correlated.

@ All hranks are used within each treatment regime so that the
design is balanced.

@ This design is unique for h = 2, but the number of possible
designs increases with h. For a general h, 2"~ — 1 designs are
possible.

@ This design is motivated for the inference of the contrast
parameter A = ug — ur.

@ If h > 2, then the design a = {1,3,5,--- , h— 2, h} minimizes the
variance of A(ORR).
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Order Restricted Randomized Designs

Variance of A gp for normal distribution

h a ORR SRS—RSS RSS-ORR
2 {1} 0727 0637 0.637
3 {1} 0825  0.954 0.219
{2} 0530  0.954 0.515*
4 {1,2} 0687  1.178 0.135
{1,3} 0336  1.178 0.485*
{1,4} 0386  1.178 0.437
5 {1,2} 0732  1.278 -0.010
{1,3} 0449 1278 0.273
{1,4} 0353  1.278 0.369
{1,5} 0470  1.278 0.252
(2,3} 0424 1278 0.298
(2,4} 0277 1278 0.445*
{2,5} 0353  1.278 0.369
(3,4} 0424 1278 0.298
{3,5} 0449 1278 0.273
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Inference Based on Means: Two-Sample models,
Ozturk and MacEachern (2005,EES)

@ Consider testing Hy : A = 0 against Hy : A # 0.
@ A natural test statistic for this hypothesis is
Yi — Y.
T, = 10].. _ 2[]..
var(Aorr)
@ For large n, T, has normal distribution.

@ For small sample sizes, Student’s t-distribution provides a
reasonable approximation to type | error.

@ By using Student’s t-distribution approximation, we can construct
(1 —~v)100% confidence interval for A

Vi — Yapp. = b 420/ var(A oge)
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Estimated Type | error rates of Ty

Model p n Py=0.05 P;=0.05
Normal 1.0 3  0.124 0.051
5  0.081 0.052
10 0.066 0.049
30  0.059 0.054
Normal 05 3  0.127 0.054
5  0.086 0.052
10 0.064 0.050
30  0.056 0.052
s 10 3 0.116 0.047
5  0.083 0.045
10 0.060 0.042
30  0.053 0.048
5 p=05 3 0116 0.044
5  0.091 0.050
10 0.065 0.050
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Two-Sample Model

Estimated type | error rates of Ty

Model p n

Py =0.05 P;=0.05

f3 1.0 3 0.099 0.036
5 0.070 0.036

10 0.055 0.040

30 0.051 0.046

f3 05 3 0.105 0.040
5 0.073 0.041

10 0.061 0.047

30 0.049 0.045

L.Nor 1.0 3 0.086 0.033
5 0.061 0.030

10 0.049 0.035

30 0.047 0.043

L.Nor 05 3 0.088 0.030
5 0.062 0.029

10 0.047 0.030

30

Omer Ozturk (OSU) o]31:1
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Empirical powers of two sample t-test of ORR design
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Inference Based on Means: Linear models

@ We express the response vector in a linear model structure
Y =Ci83+o¢€;, fori=1,.--- n, (1)

where C; is the 2h x p dimensional design matrix, 3 is the
parameter vector and €; = (€j;, €},)’ is the residual vector. Note
that each replication contains responses from two different sets,
each of size h.

@ LetY=(Y4,---,Ypn). Then the model 1 can be written as
Y=CB+oce=p+oe,pucV, (2)

where V is a p-dimensional subspace of RN, N = 2hn

Omer Ozturk (OSU) ORR Dokuz Eylul U 23/33



Linear models

@ The model 2 can be rewritten to highlight differences between the
parameters that are the property of the model and the ranking
mechanism

Y = G181 + C23; + 0k, (3)

where C; is the design matrix that could account the differences
in means of ranking classes and interaction effects between the
ranking classes and other factors in the experiment.

@ Under some mild assumptions, we can write
EY=pup, var(Y)=T,

where T is a 2hn x 2hn block-diagonal matrix, each block of which
contains X that corresponds to var(ejq).
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Generalized Linear Model

@ We transform the model in the following fashion.
Y'=p" +o€,
where
y-=r—12 Y, u= I'_1/2u, e =T 1/2¢ (4)
@ Let
Ve = {V* —r'"2y,ve V}.

Since T is an invertible matrix and V is a p-dimensional subspace
V* is a p-dimensional subspace. Under the transformation 4

EY*=p*, p*eV, cov(Y*) = o°l.
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Linear models

Least Square Estimator

@ We estimate p* with least square estimators from the transformed
model 4 which follows from the projection of Y* onto the space V*,

i:l’* = PV* Y*a

where Py. Y™ is the projection of Y* onto V*.

@ Let C be a basis matrix for the subspace V. Then X =T~ '/2Cis a
basis matrix for the subspace V*.

@ By using the uniqueness of the projection matrix, we write
= XXX XY
@ Note that & = /24 and then

p = ccer'cler'y (5)
B = (crilgyicrly (6)
@ Under model (1), both & and 3 are unbiased for x and 3,
respectively.
Omer Ozturk (OSU) ORR
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Estimate of the Variance

(N=p)s® = [Py Y|
= |IPv;(n" + €2 =[|Py;e?
= |IY[2 =l

In terms of the original model, this reduces to

(N=p)s? = (Y - )T (Y - )
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27/33



Hypothesis Testing

@ Let W be a g-dimensional subspace of V, where g < p.
@ Then the general linear hypothesis considers testing

Ho:pne W againstHa:p ¢ W. (7)

o Let W* = {w*=T""2w; w € W}. Then u* € W* if and only
w € W. Therefore, testing hypotheses (7) is equivalent to testing

Ho:peW* Hp:pé¢ W (8)

@ Then the generalized F-test statistic for the hypothesis (8) has the
form
Py.w- Y2 —
FN:HV|W*2||XN P
[Py Y| pP—q

(9)
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Two treatments
@ Let

Yijpg = 0+ aj+v+ ()i + oeiu
= W] + TEifjts
where Yy is the response measurement from the /-th treatment,

J-th judgment class, t-th set and /-th replication.
@ In this model, we use the usual constraints

2
(aM)ig =0 > (av)iyy = 0.

2
=1 j=1

li

@ Under these constraints, the subspace V that spans y;; has
dimension 4.
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________________________Exampies |
Generalized Least Squares Estimators

@ Assume that F is symmetric. Then under some regularity
conditions

A

0 = Y. d=y.—Yy)i=12
o= (Y. = Y= 1.2, @y = (Y — Vi)

@ The total variation is partitioned as

Source df Sum of Square

Treat 1 SSTR = bZ, 1(Yiry. — Y[] )2
Jud 1 SSJ = b2_1(Ym - Y[] )2
Int 1 SS/_CZ/ 1(Y[]j —Y[] )

Res N-3 SSR=SST - SSTR- SSJ
SST = &S {(Yappi — Yeppi)? + (Yoppei — Yapei)?} +
L {Yappi Yo + Yo Vi
b=2n/(c?(1 - p)), ¢ = 2n/(s2(1 + p))
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Empirical Power

Empirical Power
@ Model

Yijpu = 0+ i+ + (@) +oeqpa, i, j, t=1,21=1,...n

@ Dell and Clutter (1972) model: Units are ranked based on
estimates of the error terms on each unit,

Up=¢€j+ Wj,ej ~ F, W,'NN(O,TZ)

@ For our model, a vector of H independent error terms,
€ = (e1,- -+ ,€y) is generated from F. Another vector of H
independent random variates, w = (wq, - - - , wy), is generated
from N(0, 72).

@ We add e and w, u = ¢ + w, and sort the vector u. Corresponding
e values are taken as judgment order statistics.

@ The information content of judgment ranking in this model is
controlled by the variance of w, or equivalently by the correlation
between u and ¢, cor = 1/(1 + 72)1/2.
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Empirical power ORR design
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Concluding Remarks

@ Use of EU related subjective information improves statistical
inference in ORR and RSS designs.

@ ORR designs unlike RSS designs uses all experimental units
available for the study.

@ For the inference on the contrasting features of factor levels, ORR
design provides improved efficiency over RSS and SRS designs.

@ Linear model analysis provides a unified theory that can be used
for SRS, RSS and ORR as long as you determine appropriate
covariance structure.
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