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Ranked set sample

Ranked set sampling

@ Select M units at random from a specified population.

@ Rank these M units with some expert judgment without measuring
them.

@ Retain the smallest judged unit and return the others.
Select the second M units and retain the second smallest unit
judged.

@ Continue to the process until M ordered units are measured.

@ Note: These M ordered observations X(4);, ..., X(u); are called a

cycle.
@ Note: Process repeated i = 1,--- , ncycle to get Mn observations.
These nM observations are called a standard ranked set sample.
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Ranked set sample

Diagram

LetM=4and n=2.

Judgment Rank
Cycle 1 2 3 4

Xy Xy Xyt X
1 Xy Xy Xeyr X
Xy Xoyr Xeyr X
Xyt Xeyp Xeyr Xy
Xz Xz Xapz Xape
2 Xz Xepz Xepz Xape
Xz Xz Xapz Xape
)

Xy Xeop Xap Xap

X1y1,+ s X(a)2 is called a ranked set sample.
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Why ranked-set sampling?
@ Let X;,i=1,--- ,mbe a SRS, and let Xzss and Xggs denote the

sample averages based on RSS and SRS.
@ lItis easy to observe that

m m

_ 1 1
var(Xsps) = = var(d_ X)) = = var(d_ X))
i—1 i—1

1 [ ;
= W ZU(ZI) + ZU,’] = Vaf(quss) + cov
P iz

var(Xsps) > var(Xgss)

@ Inequality becomes an equality when the ranking is completely
random.

@ This improved efficiency result holds for almost all statistical
procedures based on RSS.
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Problems?

@ In standard ranked set sampling, the ranker must assign a rank to
the unit selected for full measurement. Ties are not allowed.

@ Even if the ranker has no confidence or little confidence to rank
the units accurately, he/she is forced to produce a single rank for
the selected unit.

@ This leads to ranking error.

@ Ranking error does not only reduce the efficiency, it may also
provide invalid inference.

@ We introduce an alternative sampling scheme that reduce the
impact of ranking error when the rankers have little or no
confidence to rank the units accurately.
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A motivating example

? ? ? ? ? ? ? ? ? ?

Unranked experimental units
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Judgment subsetting

@ Select M units at random from a specified population.

@ Rank these M units with some expert judgment without
measurement by allowing ties among the units whenever their
ranks can not be assigned with high confidence.

@ The smallest ranked unit(s) is replaced in set sy ;, second smallest
unit(s) is replaced in set s, j and so on until the dj-th smallest
unit(s) is replaced in set sg ;.

@ The subsets, sy, - - - ; Sa.j» are partially ordered since any unit in
Sp,j has a smaller rank than any other unitin sy jas long as h < #'.

o Let Dj = {s1,---,Sq} be a set of the judgment subsets.

@ This process is called judgment subsetting.
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Judgment Subsetting :Example

Si1 S Sa1 Sa1

@ Dy ={511,52,1,531,54,1}
@ spy<sp1,h<h
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Sampling from ordered subsets

@ Select a sample size N and set size M.

@ Select N sets each of size M from the population of interest.

@ Apply judgment subsetting process to each one of the N sets to
create design parameters {D;,d;},j=1,--- N

@ Group these N sets into K different groups G;, i =1, - | K,

K
GI:{D1,f;"' )Dn,',l'}v Zni:N7
i=1

where Dy, ; = D; for some j.
@ In each group G, select a unit at random for full measurement

from subset sy p;inset Dy ;, h=1,---,n;, where sy, ; is the h-t
subset in set D, ; and group Gi
@ Th fully measured units, X[Shh/] h=1,--- n,i=1,--- K, are

called partially rank ordered set (PROS) sample
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Sampling from ordered subsets

Definition
Sampling design will be called balanced if the sets G;, i =1,--- ,K
satisfy the following condition

UK (Up_ Shpi) = LM,

where M is the set of integers 1,--- , M and L is an integer number.
@ This definition indicates that union of subsets sy, h=1,---,n;,
i=1,---,K can provide L sets of integer 1,--- , M.

@ Each one of the L sets can be considered as a cycle that contains
all order statistics in a set of size M.

@ Design G: the collection of G;, i = 1,--- | K, is called design.

Omer Ozturk (OSU) Sampling from Partially Ordered Sets I. Econ Univ and TUBITAK 11/56



Sampling from ordered subsets

Design G: M =10and K = 2.

Group(i) S Judgment subsets My Xs,
1 S1,1,1,52,11 {1,2,3,4,5},{6,7,8,9,10} 5 )([3111 1
51,21,52,2,1,53 2,1 {1,2,3},{475,677},{8,9,10} 4 )([5221]
51,3,1,52,3,1, 53,3,1 {1,2,3},{4,5},{6,7,8,9,10} 5 [S3.3.1]

2 51,1,2,52,1,2,53,1,2 {1,2,3},{4,5,6,7},{8,9,10} 3 [51.1.2]
S1,22,522 {1,273,4,5,6,7},{8,9710} 3 [s2,2.2]

@ This sample is balanced since the union of sy, h=1,n;,i=1,2
(integers having the red colors) creates two cycles.

® X, ,, Is selected at random from the units in partially ordered set
Sh,h,i-

@ my; is the number of unranked units in judgment subset sy, ;.
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Sampling from ordered subsets

Design G*: If the within group sets have the same partition, the
collection of G; is called design G*.
N=5K=2,M=6
Goup(i) Sy Judgment Subsets mp;  Obs
1 {31,1,1731,2,1731,3,1} {172}7{374}7{57 6} 2
{s2,1,1,8221,8231} {1,2},{3,4},{5,6} 2
1831,1,832.1,833.1) 11,2},{3,4},{5,6} 2 X,
3
3

2 {s1,12,8122} {1,2,3},{4,5,6}
{8212,5000} {1,2,3},{4,5,6}
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Sampling from ordered subsets

Design G**: If all sets S, ; have the same partition, the collection of G;

is called design G**.

N=4K=2,M=6

Goup(i) Sy Judgment Subsets my;  Obs
1 {817171,31’271} {1,2,3},{4,5,6} 3 )(31’1’1
{S211,821} {1,2,3},{4,56} 3 X,

2 {s112,8122F {1.,2,3},{4,56} 3 X5,
{82,172,327272} {1,2,3},{4,5,6} 3 X3222
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Sampling from ordered subsets

Some Observations
@ Subsets sp p,; are random subsets, and the number of subsets in
each set is a random integer.

@ Balanced design leads to robust inference against imperfect
ranking.

@ Construction of G may pose some logistical challenges in
practice, but it produces the least amount of ranking error.

@ Design G* and G** are easy to construct, but they may have
slightly elevated ranking error.
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Sampling from ordered subsets

Lemma

Let X, 1 be an observation from a PROS sample from a population
having a finite second moment. The probability density function (pdf),
mean and variance of Xs, ; are given by

Girmy (V) = fir-m (Y
oy mh,re;” [
EX[h;mh,i] = mp] = Z Hr:M)s
h,i rE€sh p,i
B
var(Xinm, 1) = Tiwms g = — >~ (o + #fan)
hii resp p,i

2
( > M[rM]) :
h'fEShh:
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Estimation of the population mean

Let
.1 K n;j
Xpros = 77 . Z > MhiXisyn
i=1 h=1
Lemma
Let X[s”y,.], r=1,---,n;,i=1,---,K be a balanced random sample

from design G. The estimator Xpros is unbiased for j and its
conditional variance given design G is equal to

K nj
U LQMZZmeJ Z {ohm + ( “[hM]_ p?)}
j=1r=1 hes; r
K nj
L2M2 ZZ :](’y[rmr/] )
j=1r=1
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Estimation of the population mean

@ For design G*, the variance of Xpgog simplifies to

2K K nj
20T njimm — 2
nm= ML2 M2L2 Z mj Z Mismy] — 7”1') )
j=1 i=1

where Jp, = S im /1)
@ For design G**, the variance of Xpros simplifies to
2 n
= rel 'Y[i;m] — )2
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Estimation of the population mean

Relative efficiency with respect to RSS

@ Assume that ranking is free.

@ A fair comparison can be made by matching the number of fully
measured units in both designs.

@ Let Xass = & Y1 X1., be a ranked set sample with just one

cycle.
® We consider Xpaos = 17 S Mr1Xs,, ] With just one group.
@ Let D= {my4,---,my+} be the set of integers that contains
number of units in subsets s, , 1, r =1,--- ,H.
o Let RE = Y Xass)

var(Xpros)
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Estimation of the population mean

Relative efficiencies for several designs

N L U E

M D RE RE RE RE
6 {3,3}] 1350 1.295 1485 1.210
{420  1.087 1.081 1.089 1.645
(5,1}  0.656 0.686 0.598 1.182
{2,2,2}  1.331 1.278 1.441 1.212
{1,4,1} 0724 0.817 0.563 0.931

8 {44} 1438 1363 1.636 1.255
(5,31 1.260 1.225 1.333 1.687
(6,21 0902 0.920 0.851 1.708
{3,2,31  1.316 1.222 1.600 1.125
(2,42} 1.363 1.415 1.176 1.441
{1,6,11 0559 064 0.426 0.755
{2,2,2,2} 1.402 1.333 1.543 1.261
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Estimation of the population mean

Summary:
@ RE increases with M.

@ For symmetric distributions, design G* or design G** provides
high efficiency with respect to a comparable RSS design.

@ If we high confidence for correct ranking, we select large n
(number of judgment subsets).

@ For skewed distributions, exponential, gamma, log-normal, G* and
G** are not optimal.

@ Optimal design for skewed distribution may depend on the shape
and the location(s) of the mode(s) of the underlying distribution.
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Estimation of the population mean

Unconditional Variance of Xpgos
@ We assume that the number of judgment subsets nis an integer
random variable.
@ Note that n can take certain values, i.e M/n must be an integer.
@ Forexampleif M =12,thenn=1,2,3,4,6,12.
@ Assume that n has a truncated binomial (p,M) random variable,

with success probability p and sample size M, which puts all its
probability masses on possible values of n

@ Under this model, unconditional variance of Xpgog in design G* is
given by

Z el {02 _ Zher Oty = u)z}

2
- n n
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Relative efficiency of Xpros, M = 8

Y
0.100

0.200
0.300
0.400
0.500
0.600
0.670
0.700
0.800
0.900
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E(n)
1.303
1.639
2.119
2.713
3.290
3.869
4.544
5.009
7.111
7.958

var(Xsps)/n?
1.095

1.209
1.365
1.609
1.983
2.476
2.850
3.017
3.644
3.980

var(Xpss)/n?
1.037

1.078
1.126
1.184
1.253
1.318
1.338
1.331
1.168
1.010
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Estimation of the population mean

Lemma

Under perfect ranking, assume mp; = M/2, h=1,---,2,i=1,.-- K.
For this design, D** = {M/2, M2}, RED**(XRSS,XPROS) > 1 for any
even M.

@ This result holds for perfect ranking.

@ Under imperfect ranking, obtaining similar efficiency result
depends on judgment ranking model.
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Dell Clutter model (1972)

@ Ranking is performed based on the perceived values of the
experimental units.

@ LetY=(Yy, -+, Yu) be an M-dimensional random vector from
underlying distribution F

@ Lete=(e1---,ey) be another random vector from a normal
distribution with mean zero and variance 72.

@ letX=Y+e

@ The vector X is sorted and the unit Y; that corresponds X(;y is
selected as the i-th judgment order statistic.

@ Quality of ranking information is measured with p = cor(X, Y), or
equivalently with variance of € (72).
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Relative efficiency of Xpros With respect to Xgss

Normal, N(0,1)

o
N
— p=1
--- p=09
p=0.75
- p=05
o
2
>
3
2
8
S
E
o
°
2
=
g =
<
i

Set size (M)
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Relative efficiency of Xpros With respect to Xgss

Uniform, U(0,1)

25

2.0

Relative efficiency

15

1.0

Set size (M)
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Relative efficiency of Xpros With respect to Xgss

f(x) =3x%/2, -1 <x <1

25

2.0

Relative efficiency

15

1.0

Set size (M)
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Relative efficiency of Xpros With respect to Xgss

Exponential, Exp(1)

25

2.0

Relative efficiency

15

1.0

Set size (M)
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Estimation of the population variance

@ Simple random sample estimator: Sample variance, S?, based on
a simple random sample.

@ Stokes (1980) estimator: Sample variance based on a ranked set
sample.

@ MOSW (MacEachern, Ozturk, Stark and Wolfe, 2002) estimator:

n k

~2

5 = n_1k222 Yini = Yiry)*
i#j h=1

n n Kk
nzkz ZZZ Yimi = Yiwy)*,

1 j=1 h£h
= A+B

@ The first term represents within judgment class variation.
@ The second term represents between judgment class variation.
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Estimation of the population variance

Assume that mp;=m, h=1,--- . n;,i=1,--- K, withn; =n.

@ Let
1 K K n
2K2M2 ZZZ mX[srr/] mXS[hh:]) .
i=1j=1r#h
o Let
2
B= 2K 1)M2 Z Z(mX[Srrl] mX[Sr,r,l]) :
i#j r=1

@ The new estimator is defined as 72 = A + B.
@ TZ2is unbiased.
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Estimation of the population variance

Table: Relative efficiency of T2 with respect 62 and S2 for several

distributions, RE; = var(62)/var(T2), RE, = var(S?)/var(52).

U0, 1)
M K n RE RE
4 2 2 1130 1.463
4 5 2 1045 1.187
10 2 2 1248 1615
10 5 2 1081 1228
6 2 3 1204 1.738
6 5 3 1156 1.441
15 2 3 1509 2178
15 5 3 1409 1757
8 2 4 1286 2.023
8 5 4 1257 1.732
20 2 4 1791 2817
20 5 4 1726 2378

Expon
RE; RE;
1.013 1.066
1.005 1.049
1.021  1.075
1.007 1.050
1.022 1.124
1.017 1.105
1.037 1.141
1.029 1.117
1.033 1.182
1.030 1.165
1.058 1.210
1.052 1.190

N(0,1)
RE:  RE
1.051 1.193
1.016 1.073
1.090 1.238
1.028 1.086
1.085 1.322
1.068 1.212
1169 1.424
1138 1.292
1121 1.462
1111  1.364
1249 1.629
1231 1510

G(5,1)
RE,  RE:
1.033 1.135
1.011  1.065
1.057  1.161
1.018 1.072
1.054 1.229
1.043 1.164
1101 1.283
1.081 1.207
1.077 1.326
1.070  1.269
1.147 1.413
1136 1.347
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Estimation of the population variance

Summary:
e Efficiency of TZ is higher than the efficiencies of 4% and S2.
@ Efficiency increases with set size M when n > 2.

@ Efficiency decreases for a fixed set size M and n = 2 when K
goes from 2 to 5.

@ For skewed distributions, proposed variance estimator appears to
have the same efficiency as the RSS variance estimator of
MacEachern, Ozturk, Stark and Wolfe(2002).
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Estimation of the population variance

Relative efficiency of T2 and 52 with respect to S2
(RE; = var(62)/var(T2) and RE, = var(S?)/var(62)).

~
- RELn=2M=4
© - REZN=2
—- RE2n=4
>
g =
§ 3
<
s
L FE
& \
N\
I R R
P et
\
o] N
e R
N
RS
o | Ty
T T T T T T
0 20 40 60 80 100
cycle size (K)

When n = 2, T,% is asymptotically equivalent to 52 even for large M.
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Estimation of the population variance

Relative efficiency of TZ with respect to 62, RE = var(62)/var(TZ).
The number of subsets (n) are given on each line.

Normal

Relative efficiency
1.4 16
L L

12

1.0

Set size (M)
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Estimation of the population variance

Relative efficiency of TZ with respect to 62, RE = var(62)/var(TZ).
The number of subsets (n) are given on each line.

Uniform, U(0,1)

1.6

14
I

Relative efficiency

12
L

\
N

1.0

Set size (M)
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Estimation of the population variance

Relative efficiency of TZ with respect to 62, RE = var(62)/var(TZ).
The number of subsets (n) are given on each line.

(x) =3x*/2, -1 <x <1

1.6

Relative efficiency
14

12

Set size (M)
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Estimation of the population variance

Relative efficiency of TZ with respect to 62, RE = var(62)/var(TZ).
The number of subsets (n) are given on each line.

Exponential, Exp(1)

12

Relative efficiency
09 10
L L

0.8
L

Set size (M)
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Accuracy of judgment subsetting

Judgment subsetting error

@ Treat judgment subset classes as a factor in one-way anova
model.

@ Compute MST and MSE.
@ The proposed variance can be written as

T2 r:?{(” —1)MST + (nK — n+ 1)MSE}.

@ We then use

_ MST

-~ MSE
to test if the judgment subsetting process is effective to create
partially ordered subsets.

@ Large values of Uk indicates that judgment subsetting is effective.

Uk
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Accuracy of judgment subsetti

Empirical power of Uk

Empirical Power
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Two-Sample Problems

Two sample Problem

@ Let F and H be the CDF of X and Y samples with unique
medians 01 and 6, respectively.

o Let Xs[,i], ,i=1,...,N; and Ys[tj],-,jz 1,..., N> be PROS samples

from distribution F and H with respective set and cycle sizes,
M;,Kq, and Ms, K.
@ We wishtotest H,: A =6, — 6; = 0 against Hy: A # 0.
@ We use the test statistics
B 1 Ny N
T = K My Ko Iz;jz; m[r,-]iQ[t,-]j((I(Xs[,,]; < Ys[zj],-) — Tny),

where my,;; and Qi are the number of unranked units in each
subsets of X and Y samples, respectively, and
Trity = E(I(Xs[r,-]i < YS[:,-]/))-

Omer Ozturk (OSU) Sampling from Partially Ordered Sets I. Econ Univ and TUBITAK
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Two-Sample Problems

Asymptotic results
@ Let Nt = Kiny + Kono, A = IimN1_,oo
where 0 < A < 1. For large values of N;, under the null
hypothesis, the conditional distribution of \/N; T* for a given
design G converges to a normal distribution with mean 0, and
variance o2 = B¢o 1 + 2:(1 0, Where

Ky My

Ny

2 .
01 = N“m K[rll\/]ll {Eﬁ[m(Hz(y)) B (E,—:[ri](H(y)))z}

Gro= Jim Z 0] b { Eny (F20) (B (F))? ).

2—>oo K
where Fi;)(y) = P(Xs, , 1 < ¥) and H(y) = P Visy g1 = V)
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Two-Sample Problems

@ Under G** design and Hy, (o,1 and ¢y o simplify to:

m m2M1/m m m .,
G0t = 5~ 1 / F(2)dFig(2)2 = 5~ 17
)
2M2/q
1 _ 4 )2 = qq 2.
C‘”_ MgH/F 2R @) = 374,72

@ Under perfect ranking, (o 1 and (1o are asymptotically distribution
free, and equal to :

2 M1/m

m > (@2rm—m+1)?

=M M
O3 AMy(My + 12 =

M.
q q2 h/q

_ 4 2
G0 =3~ Tud(uy 1 2 (B aT 1
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Two-Sample Problems

Pittman Asymptotic Relative efficiency Results

@ Simple random sampling (SRS)
eff(SRS) = / £2(x) dx)?

@ Rank set sampling (RSS). Let n = M/m, and then

eff(RSS) = 3(”; 1)(/ £2(x)dx)2.

@ Partially Ranked-Ordered set sampling.Let My = Mo = M,
Ky = Ko, m= q, then
3 [ f2(x)dx)?
- Wzﬁﬂ(zrm— m+1)32

eff(PROS) =
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Two-Sample Problems

Table: Pittman Asymptotic Relative efficiency(ARE)

M m n | ARE(RSS,SRS) | ARE(PROS,SRS) | ARE(PROS,RSS)
6 2 3 2 2.88 1.44
6 3 2 15 2.23 1.48
8 2 4 2.5 3.85 1.54
8 4 2 15 2.45 1.63
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Two-Sample Problems

Null Distribution of rank-sum test
@ We rejectH, : 01 — 6o = 0 against Hp : 61 — 02 # 0 for extreme

values of T*.

@ Limiting distribution of \/N;T*/,/o is normal.

@ The asymptotic variance 02 = o1 + 725:¢4,0 is not distribution
free in general. It is distribution free under perfect ranking,

m om0 >, m P
01 =5 ~ g, - (| FEF@)7 =3~ g
M/q 2
9_9 [ Faofyy=3- &
Co,1 3 W t;( F(2)dFy(2))" = 3 A
My /m Ma/q

™ = Z T?,,ng Z 7"2,
r r=1

@ Under imperfect ranking o must be estimated.
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Estimation of o
@ Let #; and 6, be the sample medians of X- and Y-samples,
respectively.
@ We first center the X-and Y-sample data by subtracting the
sample medians from each observations

Xs . = XS[,]; - 91) Yo, = YS[{]/ - 027

Siri Syt
@ The centered observations are pooled to create

=X X3 o YE Y, r=1,---,n.

S’ Sk S Siriky
@ Let F(t) be the empirical CDF of F based on Zj, r =1,---,n

n Ki+Kz

A 1
S * o< ).
F(t) nK; + nkK uz:; ; /(Z[u]/ = t)
@ An unbiased estimator of 7, is then given by
Ki+K.
~ 1 2 L K /2 + K2/2 .
Tr = m Z {F(Z[r]l)_m r=1,-,n

i=1
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Two-Sample Problems

Null distribution of T*
@ Assume that m = g, then 7y = 7,

2

P p M Mo

Co,1 =C10= 3 M,
@ The estimate of the o2 is given by

~2_ M2 2 2

0% =Gt %0

@ The limiting distribution of T*/& can be approximated by Studen’s
t-distributions with degrees of freedom N; — 1
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Two-Sample Problems

Confidence Interval for A
@ Let D1y < Doy < -+ < D, n,) be the ordered differences
Xsyy — Ys[,]_]j, i=1,--- Ny,j=1,--- No.
@ A (1 — «)100% confidence interval for A is given by
(Dk++1y> Ding Np—k+) ) Where
P(R(0) < k) = a/2

and R(O) = NiN, T(O) + Ny N2/2
@ We then use continuity corrected Student’s t-approximation to
compute k*

P(R(0) < k*+1/2) = P(ty

ty_o < VN{(k* + 1/2);(N1N2) — 1/2})‘

@ From the above expression, one can compute k*
_ NiN; n NiNotn—o(a/2)6
2 VN
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Two-Sample Problems

Empirical Evidence

Table: Calibrated(C) and Uncalibrated(UC) Type | error rates of rank-sum
test. Simulation size is 5000.

K M n »p normal lognormal £(3)
uc C uc C uc C

5 6 3 1 0.042 0.063 | 0.048 0.061 | 0.048 0.063
5 6 3 09 |0.096 0.067 | 0.156 0.057 | 0.116 0.063
5 6 3 0.75|0.140 0.056 | 0.197 0.060 | 0.163 0.058
5 6 3 05 0195 0.060 | 0.228 0.057 | 0.199 0.055
5 6 3 03 |0.226 0.056 | 0.233 0.058 | 0.222 0.048
5 12 3 1 0.043 0.066 | 0.048 0.061 | 0.050 0.065
5 12 3 09 |0.120 0.063 | 0.220 0.058 | 0.175 0.063
5 12 3 0.75] 0.215 0.057 | 0.286 0.063 | 0.244 0.058
5 12 3 05 |0.277 0.055 | 0.306 0.057 | 0.295 0.056
5 12 3 0.3 |0.310 0.049 | 0.306 0.059 | 0.307 0.051
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Two-Sample Problems

Table: Calibrated(C) and uncalibrated(UC) coverage probabilities based on
PROSS design. Simulation size is 5000. RE = [245/L2 455, Where L is the

average length of simulated confidence intervals.

K M n p normal lognormal
uc C RE uc C RE

5 6 3 1.00|0.954 0.936 1.440 | 0.953 0.937 1.586
5 6 3 0900915 0.941 1.238 | 0.839 0.936 1.163
5 6 3 0.75]0.855 0.942 1.119 | 0.795 0.942 1.063
5 6 3 0.50]0.794 0.939 1.041 | 0.787 0.952 1.030
5 6 3 0.30]0.772 0.946 1.009 | 0.766 0.946 1.003
5 12 3 1.00 | 0.949 0.934 2.038 | 0.943 0.930 2.372
5 12 3 090 |0.867 0.929 1.512 | 0.768 0.941 1.302
5 12 3 0.75|0.783 0.932 1.228 | 0.725 0.937 1.122
5 12 3 0.50 | 0.704 0.943 1.076 | 0.686 0.948 1.030
5 12 3 0.30|0.683 0.949 1.037 | 0.662 0.943 1.023
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Stratified rank-sum test

@ For small cycle sizes, test may not be distribution-free if there is
ranking error. In this case, we construct an exact test.

@ For each subset s, i =1,---,n. Let Xs[,-],,jz 1,---, Ky},
i=1,-,nand Ys,,j=1,-- Koy, i=1,--- ,nbe PROSS
samples from X and Y-populations, respectively

o Let W, =31 a;W; be a class of test statistics,

n Kii K
Wa = Zal VVii7 VVII = ZZ I(XS[,,.]I' < YS[,’.]t)7
i=1 j=1 t=1

@ The null distribution of W, is distribution-free regardles the quality
of ranking information.
@ Among all positive weights «; > 0, i =1,--- , n, the weigh
o = f?[Qr,-](Y)dy
1/ Mi+1/A2
maximizes Pittman efficacy.
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Stratified rank-sum test

Asympotic Pitman relative efficiecny

Table: P|ttman Asymptotlc Relative efficiency of stratified rank-sum test,
RE; = W° , RE> = c2 , RE3 —;Wh

F’FiOSS RSS

<
o]

normal 3
RE1 RE2 RE3 RE1 RE2 RES3

6 2 | 1.000 0.930 1.381 | 1.000 0.870 1.292
6 3 | 1.009 0.939 1.353 | 1.042 0.866 1.248
8 2 | 1.000 0.914 1.495 | 1.000 0.858 1.404
8 4 | 1.017 0.932 1.438 | 1.069 0.856 1.321
12 2 | 1.000 0.895 1.653 | 1.000 0.846 1.563
12 3 | 1.022 0.899 1.853 | 1.073 0.841 1.733
12 4 | 1.027 0.910 1.809 | 1.091 0.844 1.677
12 6 | 1.025 0.926 1.542 | 1.097 0.848 1.413
16 2 | 1.000 0.886 1.760 | 1.000 0.842 1.672

1.035 0.896 2.113 | 1.107 0.837 1.975

O Nn AR 1 1RQ
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Simulation Results

Stratified rank-sum test
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Stratified rank-sum test

Simulation Results
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A few remarks

@ We proposed a sampling scheme that generates data from
partially ordered subsets.

@ The new sampling scheme yields smaller ranking error than a
standard ranked set sampling design.

@ Even with the fixed designs, the proposed sampling scheme
provides improvement for sample mean and variance estimators
over the same estimators based on standard RSS scheme.

@ The proposed sampling design can be expanded to other
inferential procedures easily.
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