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_________Motivation |
Motivation

@ Main objective is to reduce the cost in a data collection process.

@ Instead of making expensive or time consuming gold standard
measurements, we make some quick and cheap potential
observations on a set of experimental units.

@ These potential observations provide subjective forecast on the
ranks of small set of experimental units.

@ However imperfect these ranks may be, if they are used properly,
they often lead to an efficient statistical inference.
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_ Hotivalion |
Ranked Set Sampling

@ Select m units at random from a specified population.

@ Rank these m units with some expert judgment without a gold
standard measurement.

@ Retain the smallest judged unit for gold standard measurement
and return the others.

@ Select the second m units and retain the second smallest unit
judged for a measurement.

@ Continue to the process until m ordered units are measured.

@ Note: These m ordered observations Xyy;, ..., X;m}; are called a
cycle.
@ Note: Process repeated i = 1,--- , ncycle to get nm observations.

These nm observations are called a standard ranked set sample.
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LU
Ranked Set Sample Diagram

@ In each set, colored unit is

Let m=3 and n=2 selected for gold standard

Judgment Rank measurement.
Cycle | 1 2 3 ° . '
Xt X Xy Xyt =1, omj =1, .0
1 X Xt X are a_II mdep_en.dent, but not
Xur X X identically distributed.
X[1]2 X[2]2 X[3]2 @ For each fixed i,
2 X[1]2 X[2]2 X[3]2 X[,]/j =1,.--,nare iid with
X[1]2 X[g]g X[3]2 judgment class cdf F[,]
@ If there is no ranking error,
Xp11. -+ Xgp2 is called a the judgment order statistic
ranked set sample. X7, becomes usual order

statistics X,
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. Motivation |
Why ranked-set sampling?
@ Let X;,i=1,--- ,mbe a SRS, and let Xzss and Xggs denote the

sample averages based on RSS and SRS.
@ lItis easy to observe that

m m

_ 1 1
var(Xsps) = = var(d_ X)) = = var(d_ X))
i—1 i—1

1 [ ;
= W ZO'(Z,) + ZU,’] = Vaf(quss) + cov
P iz

var(Xsps) > var(Xgss)

@ Inequality becomes an equality when the ranking is completely
random.

@ This improved efficiency result holds for almost all statistical
procedures based on RSS.
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Impact of Ranking Error

@ We are almost certain that
there will be ranking error in
practice.

@ Even though the efficiency
gain still holds under
imperfect ranking, statistical
procedure may not be valid.
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Impact of Ranking Error

@ We are almost certain that
there will be ranking error in
practice.

@ Even though the efficiency
gain still holds under
imperfect ranking, statistical
procedure may not be valid.

@ In MWW test, even with a
minor ranking error, Type |
error rate is inflated.

@ Type | error Rates of MWW

test
Corr n m «
1 5 2 0.060
3 0.053
10 2 0.054
3 0.059
05 5 2 0112
3 0.147
10 2 0.097
3 0.144
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Ranking Error Models

Model

@ Bohn and Wolfe (1994) Model: Judgment class distribution is
modeled as a mixture distribution of order statistics.

m
m
) =>_pifp(y), fny)=m (
j=1

") F 00 - i)

where p; ; is the probability that the j-th order statistic is assigned
rank /.

@ P = (pi;) is a doubly stochastic matrix.
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Model

@ Bohn and Wolfe (1994) Model: Judgment class distribution is
modeled as a mixture distribution of order statistics.

w0 =S puto). o) =m( T 00 - Fyiar)
j=1

where p; ; is the probability that the j-th order statistic is assigned
rank /.

@ P = (pi;) is a doubly stochastic matrix.

@ One parameter model, Frey (2007): Judgment ranking
probabilities, p; ;, expressed as a function of a single parameter, 1,

fi(y) =D pis(m) iy (),
=1
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Ranking Error Models

Model

@ Bohn and Wolfe (1994) Model: Judgment class distribution is
modeled as a mixture distribution of order statistics.

w0 =S puto). o) =m( T 00 - Fyiar)
j=1

where p; ; is the probability that the j-th order statistic is assigned
rank /.

@ P = (pi;) is a doubly stochastic matrix.

@ One parameter model, Frey (2007): Judgment ranking
probabilities, p; ;, expressed as a function of a single parameter, 1,

fi(y) =D pis(m) iy (),
=1

@ In these models, we are interested in the estimation of P (or P(n))
and the underlying distribution function F.
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Model:Continued

@ Dell and Clutter Model (1972): Ranking is performed based on
perceived values of experimental units.

@ We generate a set of m observations, Y = (Y;,---, Yy), from a
distribution F with mean 6 and variance o?

©@ We generate another independent random vector,
w = (wq,-- -, Wp) from a normal distribution with mean zero and
variance 72. We add Y and w to obtain X = Y +w

© We sort the vector X and select the Y} as the j-th judgment order
statistics that corresponds to the j-th position in the sorted vector X.

© AQuality of judgment ranking is controlled by the correlation
coefficient between X and Y, p = corr(X,Y) = —=Z

orgr2'
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Likelihood Function

Likelihood Function
o Let Xy, 1<r<mj=1,--- ,N,N=3,n; be aranked set
sample from a continues distribution F.
@ Let X(4) < --- < X(n) be the ordered values of X[,j]j, j=1,---,N.

o Let gf)j = F(X(j)) and dF(X(j)) = Q_Sj = qu - ¢j_1-
@ Log likelihood function, based on BW model, can be written as

n m m— 1 B =
L(P,¢)=C+_log {Zp,,,s ( o1 )qs,-s {1 -0} S¢}.
i=1 s=1
@ The parameter space:

d={p:0< ¢y <---<¢pny=1} and P = {P : Doubly stoch.}

@ In this model we wist to estimate P and ¢.

@ The likelihood function L(/, ¢) is considered by Kvam and
Samaniego (1994), where I is identity matrix.
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A Simple Example: Xy < X

Likelihood surface

@ Let a= dF(Xp),b= dF(Xy)
and

P:( c 1—c>'
1-¢c ¢

@ Likelihood is maximized at
c=1,a=1/3,b=2/3.

@ Empirical CDF a=1/2,
b=1/2.

@ Kvam-Samaniego Est, c =1,
a=1/3,b=2/3.
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A Simple Example: Xz < Xy

Likelihood surface

@ Let a= dF(Xp),b= dF(Xy)
and

P:( c 1—c>'
1-¢c ¢

@ Likelihood is maximized at
c=0,a=1/3,b=2/3.

@ Empirical CDF a=1/2,
b=1/2.

@ Kvam-Samaniego Est, c =1,
a=1/2,b=1/4.
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Likelihood Function

Theorem

For a given doubly stochastic matrix P, the NPMLE of ¢ exists for any
P and is unique for some P, P € P.

@ For a fixed value P, NPMLE of ¢ is obtained as a solution of the
following estimating equation

S {G -8 1

— =0
>s1 Ars o 2
S A {1 mes
s=1 Isri(b, 1¢1}+l__1 = 0,1227' 7N_1
2321 Ai,s o; ¢i+1
m —1 ~
S {5 R 1 0
>t Ans ON |
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Missing data model

@ Let YU] be the vector of m within-set order statistics
T
Yin=(Yay < < Yimy)-

o Let Z[T,j] = (4}, , Zmj) be a multinomial random vector with

parameter 1 and P where P, = (p,/.,1 o ,p,].,m) is the rj-th row of
P.

@ The complete data then can be expressed as
Y, Zpp)i =1, N

@ For each r;, based on BW model with parameter P, we observe
the rj-th judgment order statistic, X[,}; = Z[T,j] Y-
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EM-Algorithm

@ For a fixed a known value of P, we use EM-algorithm to find the
NPMLE of ¢.
o Let FO be an initial estimate of F and

N m
My(t)=>_>_ (Y < D).
j=1 i=1

@ E-step: We find the conditional expectation of My (t) given X and
F (k)

k
My () = Epa My (1)| X, F*)
@ M-step: We construct the estimator from MS?“)(t).
1
(k+1) — 1 pplk41)
F NmMX (1)
@ We repeat the E- and M-steps until we have a convergence.
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Equivalence Result

Theorem

Suppose that we have a ranked set sample of size N. For a given
stochastic matrix P, the sequence of estimator (F('), F(2) F(3) ...}
generated from the EM-algorithm converges to the MLE defined in
estimating equations (1).

@ The EM-algorithm and estimating equations give the same
estimator.

@ It appears that the estimator is unique for an arbitrary P as long as
P is in the parameter space.
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Missing Data Approach

Consistency
Theorem

Suppose that we have a ranked set sample of size N drawn from
distribution F with limy_... 5 = €; > 0 fori=1,--- ,m. Assume that
F(¥)(t) almost surely converges to F(t) as N goes to infinity, then the
updated estimator F(k+1)(t) also converges almost surely to F(t).

@ If we select a consistent initial value for F, then k—th iteration of
the EM-algorithm will also be consistent.

@ We may conjecture from this theorem that NPMLE is a consistent
estimator.

@ As initial value of F, we select
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Estimation of Judgment Ranking Probabilities

Likelihood function based on missing data model

@ Log-likelihood function for missing data model is given by

N m N m
L(P.¢) = > zjlog(p,i)+ > zjlog(L;i(¢;))
j=1 i=1 j=1 i=1

1

1 , ,
L) = m(T ) e = ey ),

@ We need to maximize this likelihood function over P and ¢.
@ We again use EM-algorithm to find the maximizer.
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Estimation of Judgment Ranking Probabilities

EM-algorithm

@ Let PO pe an initial value of P

@ E-step: For the current value of P{), we estimate ¢ from the EM-
algorithm and obtain ¢*()). We then evaluate the conditional
expectation of log-likelihood function, Q(P), given the observed
judgment order statistics Xj); (j =1, , N), ¢*) and P(), where

Q(P) = E{L(P,¢"")|¢*(", PO Xy} .
@ M-step: We find P(+") that maximizes Q(P).
@ We repeat E- and M-steps until we have a convergence.

Omer Ozturk (OSU) NMLE of within-set ranking error IEU and TUBITAK 19/32



Estimation of Judgment Ranking Probabilities

Quadratic minimization, Ozturk (2008)

@ A competitive estimator for (p; ;) is obtained by minimizing a
dispersion function

m 2
{Fm X)) ZPst(Ut,S, m+1— s)} ,
t=1j=1 s=1

where IA-'[,](Y(’;)) is the empirical cdf of the j-th judgment class

distribution and u; = IA—'(X(t)) is the empirical cdf of F evaluated at
Xo)
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Estimation of Judgment Ranking Probabilities

Quadratic minimization, Ozturk (2008)

@ A competitive estimator for (p; ;) is obtained by minimizing a
dispersion function

m 2
{F[[] X(f ijsB(Ut,s,m+1 _S)} )
t=1j=1 s=1

where IA-'[,](Y(’;)) is the empirical cdf of the j-th judgment class

distribution and u; = I:'(X(t)) is the empirical cdf of F evaluated at
Xo)

@ The estimate of the j-th judgment class distribution is then
obtained from Bohn-Wolfe model as

Fip(u) = Zp,s u),s,m+1—s).
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Estimation of py 1, m=2

True

@ When p = 1 there is some bias in all estimators.

@ The bias shrinks when p < 1.

@ One parameter model has larger bias, but slightly smaller
standard deviation.
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Estimation of p;;j, m =3

@ The NPMLE and
. . + % % Q-estimator have
} very little bias.
: H @ The Q-estimator has
+ smaller variance

05
——
-
—

0.0
T ——
——

: H than the NPMLE.

@ One parameter
NPMLE has large
bias, but it has
slightly smaller

095 005 O variance.
P= ( 0.05 045 0.50 ) .

0 050 0.50

@ Data is generated from
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Estimationof F, m=2, n=10

p=1 p=075

CDF
CDF

00 02 04 06 08 10
00 02 04 06 08 10

p=0.9 p=05

= NPMLE
— True

—KS
— One

CDF
00 02 04 06 08 10
CDF

00 02 04 06 08 10

@ When p = 1, all estimators appear to be unbiased.
@ When p < 1, the KS estimator is not a CDF.

Omer Ozturk (OSU) NMLE of within-set ranking error IEU and TUBITAK 23/32



MSE plotof F, m=2,n=10

p=0.75

= g
s — NPMLE S
— ks
— One
g — Emp 2
g 3
3 3
w w
& 7]
< <
8 8
8 g 4
s 3
8 8
8 g 4
El T T T S
-4 -2 o 2 4
x
=09 p=05
s — NPMLE ° — BW
— kS — KS
— One — One
2 — Emp 2 = Emp
g g
3 3
w w
& 7]
< 2
8 8
8 g 4
s 3
3 3
g 8
El T — S T T T
-4 -2 0 2 4 -4 -2 4 2 4

@ When p = 1, all MSE curves appear to be the same.

@ When p < 1, the MSE curve of KS estimator has heavier tail on

the right.
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Judgment class CDF estimators Fj;, m =2, n=10

p=1 p=0.75

CcoF
CDF
00 02 04 06 08 10

00 02 04 06 08 10

CcoF
00 02 04 06 08 10
CcOF
00 02 04 06 08 10

@ When p = 1, all estimators appear to be unbiased.
@ When p < 1 the KS estimator is biased and IA-'[Q] is not a cdf.
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MSE plot of the judgment class cdf estimators, m = 2,

I' pr— 1 O p=1 p=0.75
g 3
° — NPMLE <
— K
g ] — on g
s — Emp 3
g 8 4 8
2 3 23
3 s
8 8
-4 -2 0 2 a
p=09
— NPWLE
— kS
one
— Emp
w w
) @
< 2

000 001 002 003 004 005

@ When p = 1, all MSE curves appear to be the same.
@ When p < 1, the MSE curve of KS estimator for Fz has heavier
tail on the right.
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Application

Example: Discharge water
@ This data represents the amount of discharge water, in cubic

meters per second, for floods on the Nidd River in Yorkshire,
England, Kvam and Samaniego (1994).

Rank=1 Rank=2 Rank=3
80.12 87.76 111.54
99.08 123.71 121.73

@ The NPMLE of P and P(n).

. 0.951 0.049 0.000 0.736 0.226 0.037
P=| 0.049 0452 0499 |,P(H)=| 0.226 0.547 0.226 |.

0.000 0.499 0.501 0.037 0.226 0.736

@ Data suggests that there is not much ranking error between ranking
groups 1 and 2, but substantial errors in between groups 2 and 3.

@ The estimator P(#) is not flexible enough to explain the ranking structure
in the data.
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Example (Continued): Estimate of F

< 4
-

0]
06 08

04

0.2

0.0

T T T T T
80 90 100 110 120
t

@ All estimators distribute their masses differently.

@ The KS estimator, which ignores ranking error, is not a cdf since it
does not reach to 1.
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Application

Example: Calibration for Two-sample MWW test
@ Suppose that we wish to test the location shift between F(y) and

Gly)=F(y—A). Hy: A=60F — 605 =0against Hy : A # 0.

@ We reject the null hypothesis for too large (or too small) values of
rank-sum statistics (Bohn and Wolfe, 1992), T, of a ranked set
sample.

@ The limiting null distribution of T is normal with mean zero and
variance o2 = &1 0/A+&1/(1 = \),

b1 = 1/3—L§_k;{ [ Fanarin}

1,0 1/3;%{//-_[,-](y)dF(y)}2.

i=1

@ The limiting null distribution is not distribution-free if there is ranking
error.

@ We estimate &o 1 and &1 o by using NPMLE of F;.
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Empirical type | error rates

m Est p=05 p=075 p=1.00

5 2 NPMLE 0.040 0.046  0.034
One 0036 0.036  0.036

Perf  0.086  0.088  0.064

5 3 NPMLE 0076 0070  0.052
One  0.056  0.044  0.050

Perf 0170  0.102  0.060

10 2 NPMLE 0.048 0058  0.042
One  0.032  0.052  0.038

Perf 0102  0.066  0.052

10 3 NPMLE 0.068 0.074  0.054
One  0.052  0.050  0.052

Perf  0.148  0.110  0.058

@ Under perfect ranking the Type | error rates are inflated when p < 1.

@ The one-parameter model provides reasonable calibration for the test.

@ When m =3 and p < 1, the NPMLE slightly overestimate the Type |

error rates.
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Application

Empirical coverage probabilities
n m Est p=05 p=075 p=1.00
5 2 NPMLE 0.956 0.946 0.960
One 0.962 0.958 0.962
Perf 0930 0918 0944
5 3 NPMLE 0.926 0.938 0.954
One 0.948 0.958 0.956
Perf 0.824 0.890 0.932
10 2 NPMLE 0.950 0.942 0.952
One 0.966 0.948 0.958
Perf 0.894 0.930 0.948
10 3 NPMLE 0.932 0.926 0.950
One 0.948 0.952 0.952
Perf 0.856 0.890 0.942

@ Under perfect ranking coverage probabilities are deflated when p < 1.

@ The one-parameter model provides a reasonable adjustment.

@ When m =3 and p < 1, the NPMLE slightly underestimate the coverage
probabilities.
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Summary

@ We proposed NPMLE for the within-set ranking error probabilities
and the cdf of the underlying population.

@ The NPMLEs of p;; have some bias when the true values are at
the edge of the parameter space. This bias gets smaller when
pijs stay away from 0 or 1.

@ The estimators would be helpful to reduce the impact of ranking
errors on statistical procedures based on ranked set sample data.

Omer Ozturk (OSU) NMLE of within-set ranking error IEU and TUBITAK 32/32



	Outline
	Main Talk
	Motivation
	Ranking Error
	Ranking Error Models
	Likelihood Function
	Missing Data Approach
	Estimation of Judgment Ranking Probabilities
	Simulation Results
	Application
	Summary


