Nonparametric Maximum Likelihood Estimation of Within-Set Ranking Errors in Ranked Set Sampling

Omer Ozturk

The Ohio State University

June 24, 2011

Omer Ozturk (OSU)

NMLE of within-set ranking error

IEU and TUBITAK 1 / 32

Motivation

- 2 Ranking Error
- 3 Ranking Error Models
- Likelihood Function
- 6 Missing Data Approach
- Estimation of Judgment Ranking Probabilities
- O Simulation Results
- 8 Application
 - Summary

- 4 同 ト 4 ヨ ト 4 ヨ ト

- Ranking Error
- 3 Ranking Error Models
- 4 Likelihood Function
- 5 Missing Data Approach
- Estimation of Judgment Ranking Probabilities
- O Simulation Results
- 8 Application
 - Summary

・ 同 ト ・ ヨ ト ・ ヨ

- Motivation
- 2 Ranking Error
- 3 Ranking Error Models
- 4 Likelihood Function
- 5 Missing Data Approach
- Estimation of Judgment Ranking Probabilities
- O Simulation Results
- 8 Application
 - Summary

・ 同 ト ・ ヨ ト ・ ヨ

- Ranking Error
- 3 Ranking Error Models
 - Likelihood Function
- 5 Missing Data Approach
- 6 Estimation of Judgment Ranking Probabilities
- O Simulation Results
- Application
 - Summary

・ 同 ト ・ ヨ ト ・ ヨ

- Motivation
- 2 Ranking Error
- 3 Ranking Error Models
- 4 Likelihood Function
- 5 Missing Data Approach
- 6 Estimation of Judgment Ranking Probabilities
- Simulation Results
- 3 Application
 - Summary

マロト イラト イラ

- Motivation
- 2 Ranking Error
- 3 Ranking Error Models
 - Likelihood Function
- 5 Missing Data Approach
- 6 Estimation of Judgment Ranking Probabilities
- 7 Simulation Results
- 8 Application
 - Summary

4 3 5 4 3

< A >

- Motivation
 - 2 Ranking Error
- 3 Ranking Error Models
 - Likelihood Function
- 5 Missing Data Approach
- Estimation of Judgment Ranking Probabilities
 - Simulation Results
 - a) Application
 - Summary

4 3 5 4 3

< A >

- Motivation
 - 2 Ranking Error
- 3 Ranking Error Models
 - Likelihood Function
- 5 Missing Data Approach
- Estimation of Judgment Ranking Probabilities
 - Simulation Results
- 8 Application
 - Summary

Image: A Image: A

< A >

- Motivation
 - 2 Ranking Error
- 3 Ranking Error Models
 - Likelihood Function
- 5 Missing Data Approach
- Estimation of Judgment Ranking Probabilities
 - Simulation Results
- 8 Application

< 🗇 🕨

31.5

Motivation

- Main objective is to reduce the cost in a data collection process.
- Instead of making expensive or time consuming gold standard measurements, we make some quick and cheap potential observations on a set of experimental units.
- These potential observations provide subjective forecast on the ranks of small set of experimental units.
- However imperfect these ranks may be, if they are used properly, they often lead to an efficient statistical inference.

4 B 6 4 B 6

Ranked Set Sampling

- Select *m* units at random from a specified population.
- Rank these *m* units with some expert judgment without a gold standard measurement.
- Retain the smallest judged unit for gold standard measurement and return the others.
- Select the second *m* units and retain the second smallest unit judged for a measurement.
- Continue to the process until *m* ordered units are measured.
- Note: These *m* ordered observations $X_{[1]i}, ..., X_{[m]i}$ are called a <u>cycle</u>.
- Note: Process repeated $i = 1, \dots, n$ cycle to get *nm* observations. These *nm* observations are called a <u>standard ranked set sample</u>.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Ranked Set Sample Diagram

Let m=3 and n=2

	Judgment Rank				
Cycle	1	2	3		
	<i>X</i> _{[1]1}	<i>X</i> _{[2]1}	<i>X</i> _{[3]1}		
1	<i>X</i> _{[1]1}	X _{[2]1}	X _{[3]1}		
	<i>X</i> _{[1]1}	X _{[2]1}	X _{[3]1}		
	<i>X</i> _{[1]2}	$X_{[2]2}$	X _{[3]2}		
2	X _{[1]2}	X _{[2]2}	X _{[3]2}		
	X _{[1]2}	$X_{[2]2}$	<i>X</i> [3]2		

 $X_{[1]1}, \cdots, X_{[3]2}$ is called a ranked set sample.

 In each set, colored unit is selected for gold standard measurement.

٥

 $X_{[i]j}$, $i = 1, \dots, m, j = 1, \dots, n$ are all independent, but not identically distributed.

- For each fixed *i*, $X_{[i]j}, j = 1, \dots, n$ are iid with judgment class cdf $F_{[i]}$.
- If there is no ranking error, the judgment order statistic X_{[i]j} becomes usual order statistics X_{(i)j}.

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

Why ranked-set sampling?

- Let X_i , $i = 1, \dots, m$ be a SRS, and let \bar{X}_{RSS} and \bar{X}_{SRS} denote the sample averages based on RSS and SRS.
- It is easy to observe that

$$\begin{aligned} var(\bar{X}_{SRS}) &= \frac{1}{m^2} var(\sum_{i=1}^m X_i) = \frac{1}{m^2} var(\sum_{i=1}^m X_{(i)}) \\ &= \frac{1}{m^2} \left\{ \sum_{i=1}^m \sigma_{(i)}^2 + \sum_{i \neq j} \sigma_{ij} \right\} = var(\bar{X}_{RSS}) + cov \\ var(\bar{X}_{SRS}) &\geq var(\bar{X}_{RSS}) \end{aligned}$$

- Inequality becomes an equality when the ranking is completely random.
- This improved efficiency result holds for almost all statistical procedures based on RSS.

Omer Ozturk (OSU)

イロト イポト イラト イラト

Impact of Ranking Error

- We are almost certain that there will be ranking error in practice.
- Even though the efficiency gain still holds under imperfect ranking, statistical procedure may not be valid.
- In MWW test, even with a minor ranking error, Type I error rate is inflated.

	0.147
	0 1 / /

< A >

Image: A Image: A

Impact of Ranking Error

- We are almost certain that there will be ranking error in practice.
- Even though the efficiency gain still holds under imperfect ranking, statistical procedure may not be valid.
- In MWW test, even with a minor ranking error, Type I error rate is inflated.

Type I error Rates of MWW
 test

Corr	n	m	α
1	5	2	0.060
		3	0.053
	10	2	0.054
		3	0.059
0.5	5	2	0.112
		3	0.147
	10	2	0.097
		3	0.144

Model

• Bohn and Wolfe (1994) Model: Judgment class distribution is modeled as a mixture distribution of order statistics.

$$f_{[i]}(y) = \sum_{j=1}^{m} p_{i,j} f_{(j)}(y), \quad f_{(i)}(y) = m \binom{m-1}{i-1} F^{i-1}(y) \{1 - F(y)\}^{m-i} dF(y),$$

where $p_{i,j}$ is the probability that the *j*-th order statistic is assigned rank *i*.

- $\boldsymbol{P} = (\boldsymbol{p}_{i,j})$ is a doubly stochastic matrix.
- One parameter model, Frey (2007): Judgment ranking probabilities, *p_{i,j}*, expressed as a function of a single parameter, *η*,

$$f_{[i]}(y) = \sum_{j=1}^{m} p_{i,s}(\eta) f_{(j)}(y),$$

• In these models, we are interested in the estimation of **P** (or **P**(η)) and the underlying distribution function *F*.

Model

• Bohn and Wolfe (1994) Model: Judgment class distribution is modeled as a mixture distribution of order statistics.

$$f_{[i]}(y) = \sum_{j=1}^{m} p_{i,j} f_{(j)}(y), \quad f_{(i)}(y) = m \left(\frac{m-1}{i-1} \right) F^{i-1}(y) \{1 - F(y)\}^{m-i} dF(y),$$

where $p_{i,j}$ is the probability that the *j*-th order statistic is assigned rank *i*.

- $\boldsymbol{P} = (\boldsymbol{p}_{i,j})$ is a doubly stochastic matrix.
- One parameter model, Frey (2007): Judgment ranking probabilities, *p_{i,j}*, expressed as a function of a single parameter, *η*,

$$f_{[i]}(\boldsymbol{y}) = \sum_{j=1}^{m} p_{i,s}(\eta) f_{(j)}(\boldsymbol{y}),$$

• In these models, we are interested in the estimation of **P** (or **P**(η)) and the underlying distribution function *F*.

Model

• Bohn and Wolfe (1994) Model: Judgment class distribution is modeled as a mixture distribution of order statistics.

$$f_{[i]}(y) = \sum_{j=1}^{m} p_{i,j} f_{(j)}(y), \quad f_{(i)}(y) = m \left(\frac{m-1}{i-1} \right) F^{i-1}(y) \{1 - F(y)\}^{m-i} dF(y),$$

where $p_{i,j}$ is the probability that the *j*-th order statistic is assigned rank *i*.

- $\boldsymbol{P} = (\boldsymbol{p}_{i,j})$ is a doubly stochastic matrix.
- One parameter model, Frey (2007): Judgment ranking probabilities, *p_{i,j}*, expressed as a function of a single parameter, *η*,

$$f_{[i]}(\boldsymbol{y}) = \sum_{j=1}^{m} p_{i,s}(\eta) f_{(j)}(\boldsymbol{y}),$$

• In these models, we are interested in the estimation of P (or $P(\eta)$) and the underlying distribution function F.

Omer Ozturk (OSU)

Model:Continued

- Dell and Clutter Model (1972): Ranking is performed based on perceived values of experimental units.
 - We generate a set of *m* observations, $\mathbf{Y} = (Y_1, \dots, Y_m)$, from a distribution *F* with mean θ and variance σ^2
 - 2 We generate another independent random vector, $\boldsymbol{w} = (w_1, \dots, w_m)$ from a normal distribution with mean zero and variance τ^2 . We add \boldsymbol{Y} and \boldsymbol{w} to obtain $\boldsymbol{X} = \boldsymbol{Y} + \boldsymbol{w}$
 - We sort the vector X and select the Y_[j] as the *j*-th judgment order statistics that corresponds to the *j*-th position in the sorted vector X.
 - 3 Quality of judgment ranking is controlled by the correlation coefficient between X and Y, $\rho = corr(X, Y) = \frac{\sigma}{\sqrt{\sigma^2 \pm \sigma^2}}$.

< ロ > < 同 > < 回 > < 回 > < □ > <

Likelihood Function

- Let $X_{[r_j]j}$, $1 \le r_j \le m, j = 1, \dots, N$, $N = \sum_{i=1}^m n_i$ be a ranked set sample from a continues distribution *F*.
- Let $X_{(1)} < \cdots < X_{(N)}$ be the ordered values of $X_{[r_j]j}$, $j = 1, \cdots, N$.
- Let $\phi_j = F(X_{(j)})$ and $dF(X_{(j)}) = \overline{\phi}_j = \phi_j \phi_{j-1}$.
- Log likelihood function, based on BW model, can be written as

$$L(\boldsymbol{P},\phi) = \boldsymbol{C} + \sum_{i=1}^{n} \log \left\{ \sum_{s=1}^{m} \boldsymbol{p}_{r_i,s} \left(\frac{m-1}{s-1} \right) \phi_i^{s-1} \{1-\phi_i\}^{m-s} \bar{\phi} \right\}.$$

• The parameter space:

 $\boldsymbol{\Phi} = \{ \boldsymbol{\phi} : \boldsymbol{0} < \phi_1 < \dots < \phi_N = 1 \} \text{ and } \mathcal{P} = \{ \boldsymbol{P} : \text{Doubly stoch.} \}$

- In this model we wist to estimate P and ϕ .
- The likelihood function *L*(*I*, φ) is considered by Kvam and Samaniego (1994), where *I* is identity matrix.

1

A Simple Example: $X_{[1]} < X_{[2]}$

Likelihood surface

• Let *a* = *dF*(*X*_[1]), *b* = *dF*(*X*_[2]) and

$$\boldsymbol{P} = \left(\begin{array}{cc} \boldsymbol{c} & \boldsymbol{1} - \boldsymbol{c} \\ \boldsymbol{1} - \boldsymbol{c} & \boldsymbol{c} \end{array}\right)$$

- Likelihood is maximized at c = 1, a = 1/3, b = 2/3.
- Empirical CDF *a* = 1/2, *b* = 1/2.
- Kvam-Samaniego Est, c = 1, a = 1/3, b = 2/3.

< A > <

医下子 医

A Simple Example: $X_{[2]} < X_{[1]}$

Likelihood surface

• Let $a = dF(X_{[1]}), b = dF(X_{[2]})$ and

$$\boldsymbol{P} = \left(\begin{array}{cc} \boldsymbol{c} & \boldsymbol{1} - \boldsymbol{c} \\ \boldsymbol{1} - \boldsymbol{c} & \boldsymbol{c} \end{array}\right)$$

- Likelihood is maximized at *c* = 0, *a* = 1/3, *b* = 2/3.
- Empirical CDF *a* = 1/2, *b* = 1/2.
- Kvam-Samaniego Est, c = 1, a = 1/2, b = 1/4.

イロト イポト イラト イラト

Theorem

For a given doubly stochastic matrix **P**, the NPMLE of ϕ exists for any **P** and is unique for some **P**, **P** $\in \mathcal{P}$.

• For a fixed value P, NPMLE of ϕ is obtained as a solution of the following estimating equation

$$\frac{\sum_{s=1}^{m} A_{1,s} \left\{ \frac{s-1}{\phi_{1}} - \frac{m-s}{1-\phi_{1}} \right\}}{\sum_{s=1}^{m} A_{1,s}} + \frac{1}{\phi_{1}} - \frac{1}{\phi_{2}} = 0$$

$$\frac{\sum_{s=1}^{m} A_{i,s} \left\{ \frac{s-1}{\phi_{i}} - \frac{m-s}{1-\phi_{i}} \right\}}{\sum_{s=1}^{m} A_{i,s}} + \frac{1}{\phi_{i}} - \frac{1}{\phi_{i+1}} = 0, i = 2, \cdots, N-1$$

$$\frac{\sum_{s=1}^{m} A_{N,s} \left\{ \frac{s-1}{\phi_{N}} - \frac{m-s}{1-\phi_{N}} \right\}}{\sum_{s=1}^{m} A_{N,s}} + \frac{1}{\phi_{N}} = 0, \qquad (1)$$

Missing data model

• Let **Y**_[j] be the vector of *m* within-set order statistics

$$\mathbf{Y}_{[j]}^{\top} = (Y_{(1)j} < \cdots < Y_{(m)j}).$$

- Let $\mathbf{Z}_{[r_j]}^{\top} = (z_{1j}, \cdots, z_{mj})$ be a multinomial random vector with parameter 1 and \mathbf{p}_{r_j} , where $\mathbf{p}_{r_j} = (\mathbf{p}_{r_j,1}, \cdots, \mathbf{p}_{r_j,m})$ is the r_j -th row of \mathbf{P} .
- The complete data then can be expressed as

$$(\boldsymbol{Y}_{[j]}, \boldsymbol{Z}_{[r_j]}), j = 1, \cdots, N.$$

 For each r_j, based on BW model with parameter P, we observe the r_j-th judgment order statistic, X_{[r_j]j} = Z[⊤]_[r_j] Y_[j].

EM-Algorithm

- For a fixed a known value of P, we use EM-algorithm to find the NPMLE of ϕ .
- Let $F^{(0)}$ be an initial estimate of F and

$$M_{\boldsymbol{Y}}(t) = \sum_{j=1}^{N} \sum_{i=1}^{m} I(Y_{(i)j} \leq t).$$

• E-step: We find the conditional expectation of $M_{\mathbf{Y}}(t)$ given \mathbf{X} and $F^{(k)}$

$$M_{\boldsymbol{X}}^{(k+1)}(t) = E_{F^{(k)}}M_{\boldsymbol{Y}}(t)|\boldsymbol{X}, F^{(k)}$$

• M-step: We construct the estimator from $M_{\mathbf{X}}^{(k+1)}(t)$.

$$F^{(k+1)} = \frac{1}{Nm} M_{\boldsymbol{X}}^{(k+1)}(t)$$

• We repeat the E- and M-steps until we have a convergence.

Omer Ozturk (OSU)

Equivalence Result

Theorem

Suppose that we have a ranked set sample of size N. For a given stochastic matrix **P**, the sequence of estimator $(F^{(1)}, F^{(2)}, F^{(3)}, \cdots)$ generated from the EM-algorithm converges to the MLE defined in estimating equations (1).

- The EM-algorithm and estimating equations give the same estimator.
- It appears that the estimator is unique for an arbitrary *P* as long as
 P is in the parameter space.

-

Consistency

Theorem

Suppose that we have a ranked set sample of size N drawn from distribution F with $\lim_{N\to\infty} \frac{n_i}{N} = \epsilon_i > 0$ for $i = 1, \dots, m$. Assume that $F^{(k)}(t)$ almost surely converges to F(t) as N goes to infinity, then the updated estimator $F^{(k+1)}(t)$ also converges almost surely to F(t).

- If we select a consistent initial value for F, then k-th iteration of the EM-algorithm will also be consistent.
- We may conjecture from this theorem that NPMLE is a consistent estimator.
- As initial value of F, we select

$$F^{(0)} = rac{1}{m} \sum_{i=1}^m rac{1}{n_i} \sum_{j=1}^{n_i} I(X_{[i]j} \leq t).$$

.

Likelihood function based on missing data model

Log-likelihood function for missing data model is given by

$$L(\mathbf{P},\phi) = \sum_{j=1}^{N} \sum_{i=1}^{m} z_{ij} \log(p_{r_{j},i}) + \sum_{j=1}^{N} \sum_{i=1}^{m} z_{ij} \log(\mathcal{L}_{j,i}(\phi_{j}))$$
(2)
$$\mathcal{L}_{j,i}(\phi_{j}) = m \binom{m-1}{i-1} \phi_{j}^{i-1} \{1-\phi_{j}\}^{m-i} (\phi_{j}-\phi_{j-1}).$$
(3)

- We need to maximize this likelihood function over P and ϕ .
- We again use EM-algorithm to find the maximizer.

・ 同 ト ・ ヨ ト ・ ヨ ト

EM-algorithm

Let *P*⁽⁰⁾ be an initial value of *P*

- E-step: For the current value of $P^{(t)}$, we estimate ϕ from the EMalgorithm and obtain $\phi^{*(t)}$. We then evaluate the conditional expectation of log-likelihood function, Q(P), given the observed judgment order statistics $X_{[r_j]j}$ $(j = 1, \dots, N)$, $\phi^{*(t)}$ and $P^{(t)}$, where $Q(P) = E\{L(P, \phi^{*(t)}) | \phi^{*(t)}, P^{(t)}, X_{[r_j]j}\}$.
- M-step: We find $P^{(t+1)}$ that maximizes Q(P).
- We repeat E- and M-steps until we have a convergence.

Quadratic minimization, Ozturk (2008)

• A competitive estimator for (*p*_{*i*,*j*}) is obtained by minimizing a dispersion function

$$d(\mathbf{P}) = \sum_{t=1}^{N} \sum_{j=1}^{m} \left\{ \hat{F}_{[j]}(X_{(t)}) - \sum_{s=1}^{m} p_{js} B(u_t, s, m+1-s) \right\}^2,$$

where $\hat{F}_{[j]}(Y_{(t)}^*)$ is the empirical cdf of the *j*-th judgment class distribution and $u_t = \hat{F}(X_{(t)})$ is the empirical cdf of *F* evaluated at $X_{(t)}$

• The estimate of the *j*-th judgment class distribution is then obtained from Bohn-Wolfe model as

$$F_{[j]}(u) = \sum_{s=1}^{m} \hat{p}_{j,s} B(F(u), s, m+1-s).$$

イロト イポト イラト イラト

Quadratic minimization, Ozturk (2008)

• A competitive estimator for (*p*_{*i*,*j*}) is obtained by minimizing a dispersion function

$$d(\mathbf{P}) = \sum_{t=1}^{N} \sum_{j=1}^{m} \left\{ \hat{F}_{[j]}(X_{(t)}) - \sum_{s=1}^{m} p_{js} B(u_t, s, m+1-s) \right\}^2,$$

where $\hat{F}_{[j]}(Y_{(t)}^*)$ is the empirical cdf of the *j*-th judgment class distribution and $u_t = \hat{F}(X_{(t)})$ is the empirical cdf of *F* evaluated at $X_{(t)}$

• The estimate of the *j*-th judgment class distribution is then obtained from Bohn-Wolfe model as

$$F_{[j]}(u) = \sum_{s=1}^{m} \hat{p}_{j,s} B(F(u), s, m+1-s).$$

イロト イポト イラト イラト

Estimation of $p_{1,1}$, m = 2

- When $\rho = 1$ there is some bias in all estimators.
- The bias shrinks when $\rho < 1$.
- One parameter model has larger bias, but slightly smaller standard deviation.

Omer Ozturk (OSU)

Estimation of $p_{i,j}$, m = 3

Data is generated from

$$oldsymbol{P} = \left(egin{array}{cccc} 0.95 & 0.05 & 0 \ 0.05 & 0.45 & 0.50 \ 0 & 0.50 & 0.50 \end{array}
ight)$$

- The NPMLE and Q-estimator have very little bias.
- The Q-estimator has smaller variance than the NPMLE.
- One parameter NPMLE has large bias, but it has slightly smaller variance.

Estimation of F, m = 2, n = 10

• When $\rho = 1$, all estimators appear to be unbiased.

• When $\rho < 1$, the KS estimator is not a CDF.

э

Simulation Results

• When $\rho = 1$, all MSE curves appear to be the same.

 When ρ < 1, the MSE curve of KS estimator has heavier tail on the right.

Judgment class CDF estimators $F_{[i]}, m = 2, n = 10$

• When $\rho = 1$, all estimators appear to be unbiased.

• When $\rho < 1$ the KS estimator is biased and $\hat{F}_{[2]}$ is not a cdf.

MSE plot of the judgment class cdf estimators, m = 2, n = 10 $\rho = 1$ p = 0.75NPMLE BW KS KS 0.03 One 0.03 ASE 0.02 ASE 0.02 0.01 0.01 00 p = 0.9p = 0.50.04 KS 0.04 0.03 One 0.03 \$SE ASE 0.02 0.02 0.01 0.01 8

• When $\rho = 1$, all MSE curves appear to be the same.

When ρ < 1, the MSE curve of KS estimator for F
^[2] has heavier tail on the right.

Omer Ozturk (OSU)

Example: Discharge water

• This data represents the amount of discharge water, in cubic meters per second, for floods on the Nidd River in Yorkshire, England, Kvam and Samaniego (1994).

Rank=1	Rank=2	Rank=3
80.12	87.76	111.54
99.08	123.71	121.73

• The NPMLE of **P** and **P**(η).

 $\hat{\boldsymbol{P}} = \left(\begin{array}{cccc} 0.951 & 0.049 & 0.000\\ 0.049 & 0.452 & 0.499\\ 0.000 & 0.499 & 0.501 \end{array}\right), \boldsymbol{P}(\hat{\eta}) = \left(\begin{array}{cccc} 0.736 & 0.226 & 0.037\\ 0.226 & 0.547 & 0.226\\ 0.037 & 0.226 & 0.736 \end{array}\right).$

- Data suggests that there is not much ranking error between ranking groups 1 and 2, but substantial errors in between groups 2 and 3.
- The estimator $P(\hat{\eta})$ is not flexible enough to explain the ranking structure in the data.

Omer Ozturk (OSU)

Application

Example (Continued): Estimate of F

- All estimators distribute their masses differently.
- The KS estimator, which ignores ranking error, is not a cdf since it does not reach to 1.

Omer Ozturk (OSU)

NMLE of within-set ranking error

Example: Calibration for Two-sample MWW test Suppose that we wish to test the location shift between F(y) and

- Suppose that we wish to test the location shift between F(y) and $G(y) = F(y \Delta)$. $H_0 : \Delta = \theta_F \theta_G = 0$ against $H_A : \Delta \neq 0$.
- We reject the null hypothesis for too large (or too small) values of rank-sum statistics (Bohn and Wolfe, 1992), T
 , of a ranked set sample.
- The limiting null distribution of \overline{T} is normal with mean zero and variance $\sigma_{\overline{T}}^2 = \xi_{1,0}/\lambda + \xi_{0,1}/(1-\lambda)$,

$$\begin{split} \xi_{0,1} &= 1/3 - \frac{1}{k} \sum_{i=1}^{k} \left\{ \int F_{[i]}(y) dF(y) \right\}^{2} \\ \xi_{1,0} &= 1/3 - \frac{1}{q} \sum_{i=1}^{q} \left\{ \int F_{[i]}(y) dF(y) \right\}^{2}. \end{split}$$

- The limiting null distribution is not distribution-free if there is ranking error.
- We estimate $\xi_{0,1}$ and $\xi_{1,0}$ by using NPMLE of $F_{[i]}$.

Omer Ozturk (OSU)

Empirical type I error rates

1.1.1	n	m	Est	ho= 0.5	ho= 0.75	ho = 1.00
	5	2	NPMLE	0.040	0.046	0.034
			One	0.036	0.036	0.036
			Perf	0.086	0.088	0.064
	5	3	NPMLE	0.076	0.070	0.052
			One	0.056	0.044	0.050
			Perf	0.170	0.102	0.060
	10	2	NPMLE	0.048	0.058	0.042
			One	0.032	0.052	0.038
			Perf	0.102	0.066	0.052
	10	3	NPMLE	0.068	0.074	0.054
			One	0.052	0.050	0.052
			Perf	0.148	0.110	0.058

- Under perfect ranking the Type I error rates are inflated when $\rho < 1$.
- The one-parameter model provides reasonable calibration for the test.
- When m = 3 and ρ < 1, the NPMLE slightly overestimate the Type I error rates.

Empirical coverage probabilities

n	m	Est	ho= 0.5	ho= 0.75	ho = 1.00
5	2	NPMLE	0.956	0.946	0.960
		One	0.962	0.958	0.962
		Perf	0.930	0.918	0.944
5	3	NPMLE	0.926	0.938	0.954
		One	0.948	0.958	0.956
		Perf	0.824	0.890	0.932
10	2	NPMLE	0.950	0.942	0.952
		One	0.966	0.948	0.958
		Perf	0.894	0.930	0.948
10	3	NPMLE	0.932	0.926	0.950
		One	0.948	0.952	0.952
		Perf	0.856	0.890	0.942

- Under perfect ranking coverage probabilities are deflated when ρ < 1.
- The one-parameter model provides a reasonable adjustment.
- When m = 3 and ρ < 1, the NPMLE slightly underestimate the coverage probabilities.

イロト イポト イラト イラト

Summary

- We proposed NPMLE for the within-set ranking error probabilities and the cdf of the underlying population.
- The NPMLEs of *p_{i,j}* have some bias when the true values are at the edge of the parameter space. This bias gets smaller when *p_{i,j}*s stay away from 0 or 1.
- The estimators would be helpful to reduce the impact of ranking errors on statistical procedures based on ranked set sample data.