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Abstract

In this paper two characterizations of the uniform distribution using record
values will be considered. The first characterization is based on the relation
XU(m) −XU(m−1)

d
= XL(m), m > 1, where XU(m) and XL(m) denote the m-

th upper and lower record values, respectively. The second characterization
involves the second record range.
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1 Introduction

Let X1, X2, ..., Xn be a set of independent and identically distributed
(iid) random variables and denote the corresponding order statistics by
X1:n, X2:n, ..., Xn:n. For various properties of order statistics one may refer
to Ahsanullah and Nevzorov (2002), Arnold et al. (1992) and David (1981).

Let {Xi, i = 1, 2, ...} be an infinite sequence of iid random variables. The
lower record values of this sequence can be defined in the following way. Let
Y1 = X1 and Yn = min {X1, ..., Xn} for n > 1. Then Xj , j > 1 is called a
lower record value of the sequence {Xi} if Yj < Yj−1. Upper record values are
defined similarly. We will denote by XL(m) and XU(m) the m-th lower and
upper record values, respectively. More details on records can be found in
Ahsanullah (1995), Arnold et al. (1998) and Nevzorov (2001), among others.
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Several characterization results involving spacings can be found in the
literature. For example, Puri and Rubin (1970) investigated the relation
X1:1

d= X2:2 − X1:2 and showed all possible distributions satisfying this
relation. Gather (1989) considered a more general relation; Xj−i:n−i

d=
Xj:n −Xi:n. Fisz (1958), on the other hand, showed that the independence
of X2:2 − X1:2 and X1:2 is a characteristic property of the exponential dis-
tribution. There are also several characterization results involving spacings
of record statistics. Tata (1969), for example, showed that the indepen-
dence of XU(2) − XU(1) and XU(1) is a characteristic property of the expo-
nential distribution. Bairamov and Aliev (1998) showed that the sequence{
E

(
XU(n) −XU(n−1)

)
, n ≥ N

}
, for some N ≥ 0, characterizes the distribu-

tion function of X1. Ahsanullah (1991), on the other hand, showed that if
E

(
XU(n) −XU(m)

) d= E
(
XU(n−m)

)
, n > m, then the random variable X1

is exponentially distributed. The purpose of this paper is to investigate the
relation XU(m) −XU(m−1)

d= XL(m) and to present another characterization
based on the second record range for characterizing the uniform distribution.

To prove our main results we need a variant of the Choquet-Deny The-
orem (Fosam and Shanbhag (1997)). Therefore we restate the theorem for
ready reference.

Theorem 1.1. Let p be a positive integer and A be a non-empty subset
of [0,∞)p \ {0} with the property that x ∈ A implies [0,x] \ {0} ⊂ A, where
0 = (0, . . . , 0). Also, let for each x ∈ A, Bx = [0,x] \ ({x}

⋃
{0}), and

{µx : x ∈ A} be a family of probability measures (on R) such that for each
x, µx is concentrated on Bx. Then a continuous real-valued function H on
A such that H(x) has a limit as ‖x‖ tends to 0+, satisfies

H(x) =
∫

Bx

H(x− y)µx(dy), x ∈ A

if and only if it is identically equal to a constant.

The following corollary of Theorem 1.1 is used in the proofs of the results
given in the next section.

Corollary 1.1. Let A = (0, β) and for each x ∈ A, Bx = (0, β − x).
Also, let {µx : x ∈ A} be a family of probability measures as in Theorem 1.1.
Then a continuous real-valued function H on A such that H(x) has a limit
as x tends to β−, satisfies

H(x) =
∫

Bx

H(x + y)µx(dy), x ∈ A
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if and only if it is identically equal to a constant.

Let {Xi, i = 1, 2, ...} be an infinite sequence of iid nonnegative random
variables. If the iid sequence of random variables is distributed uniformly
on (0, β), that is Xi ∼ U(0, β), then it can be shown that

XU(m) −XU(m−1)
d= XL(m) , m > 1. (1.1)

See, for example, Bairamov and Eryılmaz (2001)

We begin with a special case of relation (1.1); the case when m = 2. We
will write F ∈ FP if F is a member of the following family:

F (x;α, β, γ) = 1− β−γ (α + β − x)γ ,

where α < x < α + β, 0 < β, 0 ≤ α, 0 < γ.

Let {Xi, i = 1, 2, ...} be an infinite sequence of iid nonnegative random
variables with absolutely continuous distribution function F ∈ FP . Then it
can be shown that

XU(2) −XU(1)
d= XL(2),

if and only if F ∼ U(0, β).

2 Results

Under the assumption of symmetry, we have the following theorem.
Theorem 2.1. Let {Xi, i = 1, 2, ...} be an infinite sequence of iid non-

negative random variables with absolutely continuous distribution function
F . In addition assume that the random variables are symmetric about β/2.
Then

XU(m) −XU(m−1)
d= XL(m)

for a fixed m ≥ 2, it follows that F ∼ U(0, β).

Proof. Denoting the probability density function (pdf) of XU(m) −
XU(m−1) by fm, we have

fm(x) =
∫ β−x

0

[R(y)]m−2

Γ(m− 1)
r(y)f(x + y)dy, x ∈ A,

where R(y) = − ln[1− F (y)], r(y) = dR
dy and A = (0, β). On the other hand

the pdf of XL(m−1) is given by

fXL(m)
= f(x)

[H(x)]m−1

Γ(m)
,
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where H(x) = − lnF (x). Equating the last two relations, we obtain

f(x)
[H(x)]m−1

Γ(m)
=

∫ β−x

0

[R(y)]m−2

Γ(m− 1)
r(y)f(x + y)dy, x ∈ A.

Since the random variables are symmetric about β/2, we have

H(x) = − lnF (x) = − ln
(
F̄ (β − x)

)
= R(β − x),

where F̄ (x) = 1− F (x). Hence, on simplification,

f(x) =
∫ β−x

0

d [R(y)]m−1

[R(β − x)]m−1 f(x + y) (2.1)

is obtained.

Let µx be defined by

µx(B) =
∫

B∩Bx

d [R(y)]m−1

[R(β − x)]m−1 ,

where Bx = (0, β − x). Now, equation (2.1) can be written as

f(x) =
∫

Bx

f(x + y)µx(dy), x ∈ A.

Applying Corollary 1.1 it follows that f(x) must be a constant on A and
that F ∼ U(0, β). 2

The second result is based on a relation involving the second record
range. Before stating the result some basic information on record ranges
will be reviewed.

Let {Xi, i = 1, 2, ...} be a sequence of iid random variables with a common
distribution function F (x). Assume that F (x) is absolutely continuous (with
respect to Lebesgue measure) with pdf f(x).

Now suppose that Rl
n and Rs

n are the largest and the smallest obser-
vations, respectively, when observing the n-th lower or upper record of the
sequence {Xi, i = 1, 2, ...}. One may also interpret Rl

n and Rs
n as the current

upper and lower record values of the {Xi, i = 1, 2, ...} sequence when the
n-th record of any kind (either lower or upper record) is observed. The n-th
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record range, then, is defined as W r
n = Rl

n −Rs
n, n > 1, and the joint pdf of

Rl
n and Rs

n is given by (see Arnold et al., 1998, p. 275)

fRl
n,Rs

n
(x, y) =

2n−1

(n− 2)!
[
− ln

(
F̄ (y) + F (x)

)]n−2
f(x)f(y),

−∞ < x < y < ∞.

The pdf of the n-th record range fW r
n

of W r
n is given by

fW r
n
(w) =

∫ ∞

−∞

2n−1

(n− 2)!
[
− ln

(
F̄ (w + u) + F (u)

)]n−2
f(w + u)f(u)du.

For the uniform distribution with F (x) = x, 0 < x < 1, we have

fW r
n
(w) =

2n−1

(n− 2)!
(1− w) [− ln(1− w)]n−2 , 0 < w < 1.

Thus W r
n is distributed as the (n − 1)-th, (n ≥ 2) upper record value from

a sequence of iid random variables distributed like the minimum of two
independent uniform U(0, 1) random variables. In the next theorem it will
be shown that this is a characteristic property for the uniform distribution
when n = 2.

Theorem 2.2. Suppose that {Xi, i = 1, 2, ...} is a sequence of iid ab-
solutely continuous random variables with a common distribution function
F (x). In addition assume that the random variables Xi are symmetric about
1/2. Then the following two statements are equivalent.

(a) X1 has the uniform distribution with F (x) = x, 0 < x < 1,

(b) W r
2 has the pdf 2F (x)f(x), 0 < x < 1.

Proof. It is easy to show that (a) ⇒ (b). We will prove here that also
(b) ⇒ (a) holds.

Since

fW r
2
(x) =

∫ 1−x

0
2f(x + y)f(y)dy,

from the assumption of the theorem we have

2F̄ (x)f(x) =
∫ 1−x

0
2f(x + y)f(y)dy, 0 < x < 1,
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or

f(x) =
1

F̄ (x)

∫ 1−x

0
f(x + y)f(y)dy, 0 < x < 1.

This equation can be written as

f(x) =
∫

Bx

f(x + y)µx(dy),

where
µx(B) =

∫
B∩Bx

dF (y)
F̄ (x)

,

and Bx = (0, 1− x). Now, applying Corollary 1.1 it follows that f(x) must
be a constant on (0,1), implying that F (x) = x, 0 < x < 1. 2

Remark 2.1. It is an open problem to characterize the uniform distri-
bution by the distributional properties of W r

n for n > 2.
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