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INTRODUCTION

In recent vears several intercsting statistical papers have appeared in which sealar as-
socialion measures are extended 1o local association functions. Bjerve and Doksum
(1993), Doksum et al. (1994) and Blyth (1994) introduce and discuzs a “correlation
curve” which is a generalization of the Pearson correlation coelficient. In particular
Bjerve and Doksum (1993) consider a local measure of the strength of the associa-
tion between random variables ¥ and X and introduce the correlation curve

o) f(x)
[te1B0)? + 0 2(x)]"?
where B(x) = p'(x) isthe slope of the nonparametric regression je{r) = E(¥ | X =
x), e¥(x) = Var(¥ | x) is the nonparametric residual variance and 67 = Var(X).

The idea behind the construction of £(x) is based on the fact that in the bivariate
normal case p(x) = p for all x and

plx) =

o, O
(o181 + 02)'

where f is the regression slope when ¥ is regressed on X, The correlation curve p(x)
is meaningful only when X is a continuous random variable, Jones (1996) provides
a motivation for a local dependence function, defined as the mixed partial deriv-
ative of the log density, originally proposed by Holland and Wang (1987). There
are indeed, many ways of measuring dependence between two random variables,
In a recent book Nelsen (1998) widely discusses various measure of dependencies
viewing “correlation coefficient™ as a measure of the linear dependence between ran-
dom variables and using the term a “measure of association™ for measures such as
Kendall’s tau and Spearman’s rho, Various measures of concordance and their pree.



ertics are also described in Nelsen's book providing relationship between measures
of association and dependence of random variables X and ¥,

This work was motivated by the paper of M. C. Jones (1996), (1998) and furnishes
motivation for a new local dependence function based on regression concepis. For
important bivariate distributions such as bivariate normal, the classical FGM and
Sarmanov-Lee class of distributions and several bivariate exponential the cxpected
value of this local dependence function is approximately equal to the Pearson corre-
lation coefficient.

1. THE LOCAL DEPENDENCE FUNCTION

Let (X, ¥) be a continuous bivariate random variable with joint cumulative distri-
bution function (d.[.) F(x, ¥} and with joint probability density function (p.d.f.)
fix. ¥). The marginal d.1. and p.d.l. of X and ¥ will as vsual be denoted by Fx(x).
Sfx(x) and Fy(x), fr(x) respectively. Consider the following function of two vari-
ables x and y

By vy _EX-EX|Y=yN(¥-E¥|X=x))

VEX—E(X|¥ =EJE|:? B | X=x)

which obtained from the expression of the Pearson correlation coefficient by replac-
ing mathematical expectations EX and EY by the conditional expectations E(X |
¥ = y). E{Y | X = x) respectively. By construction, H (x, y) can be interpreted
as a local dependence function characterizing the dependence between X and ¥ ata
point (x, ¥). In other words, H(x, y) can characterize the effect (influence) of X on
¥ “conditionally on X and ¥ being in a neighborhood of the point (x, ¥)* and vice
versa. After some simple algebraic manipulations (1.1) can be rewritien as follows:

Cou(X, ¥) + Ex(y)Ey(x)

[Var(x) + E3()/Var(¥) + 0

where Ex(¥) = EX = E(X | ¥ = y), Ey(x) = EY — E(¥ | X = x). Dividing the

numerator and the denominator of (1.2) by ex = Var(X) and oy = JVar(¥)
one obtains the following expression for H(x, y):

(1.1

Hix, y) = (1.2}

£+ px(¥erix)
J1+ek/1+ ek

where p = Cou(X.V) (the Pearson correlation cocfficient), gx () = if;‘;ﬂ prix) =

ayay
h:;':ﬂ . The function H{x, ¥) will be referred to as a local dependence funciion.
further analysis of equation (1.3) leta < @x(¥) = banda < gy(x) < b
(possible including a = —oo and b = o) for all (x,y) € Ny, where Ny y
denotes the support of (X, ¥). Consider now the function

Hix, ¥) = (L3

p+iz

(1, 2) = e
e

asrzr<h
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It is easy 10 check that

& dh I=1p h_a&_ t—zp
S T e R Pl B T3 - &

The critical point of A(r, 2), ie. the solutionof by = h, = 0,ist =0, z = 0.
Performing the second derivative test we have:

-0+ 2p02 = 31z —-p + 2pz% - 31z

By SR B i B TAPE ST
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Consequently at the critical point (0, 0)
hiahey — b2, = p* — 1 <0, if |p| < 1.

Therefore hir, z) has a saddle point at (0, 0). That is the point (x*, ¥*) satisfying
©ex(¥") = gy (x*) = Ois a saddle point of H(x, ¥) and at this point & (x=, ¥") = p.
It is easy to see that kir, z) has maximum a1 the boundary points (g, a) and (b, B)
and has minimum at (a, b) and (b, a).

From the equations gx(¥*} = gp(x*) = 0 one obtains E(X)=E(X|Y = y*)
and E(¥) = E(¥ | X = x*). (Therefore the point (x*, ¥*} satisfying E(X) =
E(X|1¥ =y")and E(¥) = E(F | X = x*) is a saddle point of ' (x, y) and at this
point H{x, v) is equal to p.)

From the equations @x(y) = a and gp(x) = a one has E(XX|Y =y =
E(X)+ aoy and E(Y | X = x) = E(F) + acy. Moreover, from the equations
wx(y) =aandgy(x) =bonchas E(X | ¥ = y) = E(X)+aoxand E(¥ | X =
1) = E(¥)+bay. That is at the point of the maximum of H(x, y) influence of X on
¥ {and influence of ¥ on X) is maximal, and conversely at the point of the minimum
of H(x, y) the influence of X on ¥ (and the influence of ¥ to X) is minimal, as
expected.

To simplify calculations below we denote Ay (y) = E(X | ¥ = y)and Ay(x) =
E(F|X=nr).

The properties of H(x, ¥) are given in the following lemma;

LEMMA 1. The lpcal dependence function H(x, ¥) has the following properties:
1°. If X and ¥ are independent then H(x, ¥)=0forany (x,y) € Ny y.
LAHx I < 1, forall (x, y) € Ny r.

3 Af|H (x, ¥)l = 1 for some (x, ¥) € Ny y thenp # 0.

4% Let Ax(y) and Ay(x) are differentiable functions of their arguments. [f
Hix.y) = 0forall (x,y) € Nyy then E(X'| ¥ = v)orE(¥ | X = x)
ar both are constant,

3% Let |p| = | and assume that |H(x, ¥ = 1atapoint (x, y) then px(y) =
@y (x) up to a sign. That is equality of the two standardized distances be-
fween conditional and unconditional expectations at (x, y) is an indication
that Hix, y) = 1 at this point,



I dseaideirhi v are 5. Koty

Proof. The property 1° follows directly from (1.1). The property 2° can be oh-
tained from (1.1) using Schwarz incquality.

For proving 3° let |H(x, ¥)| = 1 for some (x.¥) = My y. Then from (1.3) one
obtains

le + ex(¥)oy(x)] = -fl + w}{:r'IV‘{T + w0 (x)
and
2 + 2ppx(¥er(x) = 1+ el (v) + 92 (x) (1.4)
If p = O then from (1.4) one has w}{y] + w%n‘xj = —1, a contradiction.
For proving 4° let H(x, ¥) = 0 for all {x, ¥) € Ny y. Then from (1.3) recalling
the definitions @y (v) and @y (x) one can write

pIyay =Arl{.-IJEx‘—EHEY-AII_Y:IA?{I]-i-EYAx[}‘) {1.5)

forall (x. ¥ e Ny y.
Dufferentiating (1.5) with respect to x one has

(EX = Ax(y))Ay(x) =0 forall (x,y) e Nyy. (1.6)
Differentiating (1.6) with respect to y one obtains
A}{x}z‘-;—{y} =0 forall {x, y) e Nyy.

Hence Ay (x) or Ax(y) or both Ayix) and Ay (¥) are constant
For proving 5° let p = | and |H(x, )| = 1. Then from (1.4) onc has

I+ 20x(9eor(x) = 1 + 93 () + g2 (x)

and (px (¥} — pr(x))* = 0. ie. @x(y) = @rix). If p = —1 then from (1.4) it
follows that (ox (¥) + ¢y (x))? = 0, i.e. ox(¥) = —gy(x).

1. EXAMPLES

1. Consider a bivariate normal distribution with joint p.d.f.

| 1 x* xy ¥!
{I. ‘I:' = :\x - - zp + -3 v
f 7 moyeyl = p Pl 201 = p?) (ﬂ'; Tx Ty {";

where a} = Var(X), rrﬁ = Var(F). EX =0.E¥ =0,p = F—';—J':;;r;r I is
evidentthat E(Y | X =x) = pZa, E(X | ¥ = y) = pZy and

paxay + plxy
Joi +p2xd fol 4 p2y2

Hix, y}=
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In the standardized case when oy = oy = | we have
o+ plry
W1 +pi}'!\fl + p’xi

Consider (2.1), It is clear that & (0, 0) = p. i.e. the Pearson correlation coefficient
corresponds to the local dependence at the point (x, ¥) = (0, 0). We provide some
values of H{x, y) for selected x and ¥

Hix, y) = (2.1)

£ ¥ Hiz. y) x ¥ Hix. ¥}
o+ ot
o o 1
F :+.r_>i1
8 2« 100,
o | [} L] T
s I 4 100e
8 P
0 2 —_— -1 1]
ﬁ+4; ;I-!-p!
1
L] P =g
o 10 —_—— =1 1 —
14 100al 14 p
§ & o= 8p? 3 _g P4
' 14902 14407
- 2 oal
iy 1 ,o_!.'!.n -1 -1 .c:l+1cl-:=
I+ /T ¢ ol 149
s 9 g a -4 £ise
’ VT 28p2 I+ 1602
0 i o= 100pt " 5 P4 2501
I+ 1002 142551

One observes from the table above that & (x. ¥) takes large values when (x, y)
lies on the diagonal x = y and can be seen from the graph that x = ¥ implies
Hix, ¥} t . Conversely if x = =y and |x| + then H(x,y) | . Let p = 0.99. That
is X and ¥ are nearly linearly dependent. In the Table | some numerical values of
H(x, y) for selected x and y for this p are given.

Note that the rate of decrease of Hix, ¥) for x = 0 as ¥ deviates from 0 becomes
smaller for larger y. For x # 0 its deviation from ¥ does not affeet significantly the
value of H(x, ¥) (which of course decreases as discrepancy increases),

Tahle 1.

Mumerical values of Hix, ¥) for o = 0.99
£ r Hiaxy = ¥y Hiz.y x ¥ M.y x ¥ Hixy
o 0 099 L] 9 on I 1wd 071 =10 o =098
0 1 o 1] 0 00 2 I 100 =1 F- =031
0 2 045 ] 0 0o0s rJ n 09 =10 10 —0.9k
o 31 03 0 50 00 5 I 099 =I5 ] 0.07
N 4 oM 1] 100 00l 9 12 100 =% ] =0.65
0 3 020 o 1000 000 10 10 100 =15 5 —0.96
0 6 016 1 I 059 -1 0 070 =15 15 =099
a0 7 04 ! 1 093 =10 LU =15 -5 .00
0 8 oa2 I L1 A =1 1 om =20 0 =090
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Flgure 1. Graph of }(x, ¥) given in (2 1} for g = 0.95; 0.5; 0.05 versus —d £r.y54d
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Tahle 2.

Nusmerical values of # i, ¥iforp=101
x ¥y Hixoy x ¥  Hiz, p
0 0 aln o [LH] 0.55
0 1 0o 10 100 0T
0 10 o.07 1 1600 0.7
Li I om 100 100 050
1 1 11 -0 -0 0.55
i ] n.l4 =10 L] -D.45
1 20 013 -2 [i] 004
I 50 012 ] 20 =078
1 100 o =100 100 =0.99

MNow let o = 0.1, The numerical values of #ix, ¥} are given in the Table 2,

Comparing two tables above for #=09and p = 0.1 one observes that large val-
ues of o dependence at any point (x, y) is stronger than for small values of p. More
precisely the following can be asseried. Forx = y = 0 the values of #(x. ¥1=p
and slowly monotonically decrease as x = 0 but ¥ 1 . Already for x = ¥y=1,
H(x,) = pand for x = I and increasing v, Hix. y) is not monotonic, How-
ever Mx. ) > p is valid. For large x = y = 10 H(x, y) is substantially larger
than p and increases as ¥ deviates from the value x = 10, Nots that for o = 0.]
while H(x,¥) = 0991 for x = ¥ = 100. This intricate relationship between p
and Hf (x, ¥) further justifies the importance of a measure of Iocal dependence. The
rather complex relation between o and My, ¥) for x and y of given differsnt signs
can be analyzed from the numerical values in Table 1 and Table 2.

Computation of EH (X, ¥) is rather cumbersome in this case. We provide some
fiumerical values for the integral

P+ pxy

4
o) I ff
raxey/1 = pt e Y1 4 okl

! 2 a2
. ::n{—m (x = 2pxy + ¥ ))d‘.rdy

computed with the aid of “MATHCAD"-

A 20100 £0200 40300 0400 +0.500 L0600 £0.700  +0.800 20,900
o) 20000 40300 0299 L0398 £049%5 10907 +0.68% £07BR +08%0

Indeed there is no diserepancy (whatsoever at least up to 0.3 significant figures)
between p and J(p) for values of o less than 3 and even for P ag high as 0.9 and
J(p) = 0.890. We note however that the relation J(p) < £ holds throughout. The
same result is valid when J{p) was caleulated with the range of intervals iaken from
=10t 140,

2. Consider now the one narameter family of FOM (Farlic-Cumbel % . -
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distributions with uniform marginals. The corresponding d.f, is
Fale,y) =xy |1 + (1 = x)(1 = y)};

and the joint p.d.f. is given by
Salz. V) =1+l = 2x)(1 = 2y), L L T A -

For generalizations and further discussion of this family see c.g. Johnson and Kotz
(1975), (1977).

Ttis evident that E(Y | X = 1) = t—te(l—20), E(x| Y=yr={-let -
20). EX = EY = }. Var(X) = Var(¥) = 4. Cou(X.¥) = EXY — EXEY =
3!;,# and p = ;,Thus.

@+ a’(l = 26)(1 = 2y)

—_ . 2.2)
V3t el - 20) 3+ ak(1 —2y)2 .

Consider (2.2). One observes that in the point of symmetry (x, y) = ('I. é} the
local dependence function is as before equal to the correlation coefficient, je.

Hix.y)=

We now provide some values of Hix, ¥} for fixed (x, y).

¥ Hix, ¥ X ¥ Hix r)
o o+ ot 1 o +al
Tl I4al
0 1 & -l 1 o T
Ikt R
0 ] o | o
e Vitelsi 2 VIeal 3
o ) o 4ot I o s !
T — _—
N S I s S Vitely17 1 o1

Maximal H(x, ¥) is attained at (x, ¥} ={0,0) or (x, ¥¥={(1,1). Here H(x, )=
'ﬁ with a dip at the saddle point (x, ¥) = 1'r here Hix, y) = 5. The values H(x, ¥)
for the asymmetric points such as {0, 1), (1, 0) are the same and smaller than %
The expected value of H(x, ¥) is relatively straightforward

1 1
EIH(X, V)] = E{n-_}-—-—[ H(x, ) falx, ) dxdy.
nn



On Local Dependence F unction for Multivariare Distributions

or?

o
[ RT]
016
014
LA FS

L
0.z

J m

FF‘in,-um* 2, Graph of Hix, v} codresponding te the FGM distributions with og=1I;=1:0%
< v

——
0E RS



an I Haremons amd X RKevir

Using (2.2) and the definition of f,(x, ¥) one can write
Eler)

]
& +a’(1 = 2x)(1 - 2y)
=3 [T +e(l — 2201 =291 dx d
!!v"3+ﬂr1{l—2x}1¢3+uiu T e W1 = 2y)) dxdy

11
_ffa-r-uln-zxm—m+a’ﬂ—mfr-zn+ulu_mu—m
5 V3+el(l -2, /3 % al(1 — 2y)?

[
ff d.,td_‘u'
=g ——
4 V3i+al(l —201,/3 4 al(] — 2y)

[ |
+2“2ff (1 = 2x)(1 — 2y) dxdy
oo
|

V3+eal(l = 20)0/3 fal(l = 2y)2

+"Jff {I—Ix}zfl—:?.yjzdxd} -
5 J3+u1r1hz::?ﬁﬂfu—:}}’-‘ ;
One can check that
f T v’3+n':+{r ‘ 2.4)
J3+ulu—zx;! 2o 7 c e Jp

]

f L o SRR =0, (2.5)

| Frei-on

I
(1 —2x)? 1 Vital+e
dr = — | 2er/3 4 —3Ip [ 2212 T . (2.6
E{,h-f-ain—znl 4-!3[? (-u-'}+:r!—-u)] el

Using (2.4), (2.5), (2.6) in (2.3) one obtains

o Lo (FZ20)]

Vidol— g
2
| Vit od b
+ — | 2avI4+ ol -3 —_— i (2.7
The Taylor expansion of E [H (X, ¥)] around & = D iis
o 4 32
E ____+__ T__ T 9 "y :
@ =3~ st AT - wone toe™ 28
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Flgure 3, Graph of Efo) versus 1 % o 1 and graph of f(r) = 3. =1 % x < | (for comparizon),

Note that Efa) = § = 5 up to the order o

Figure 3 compares the graphs of E(a) over —1 < & < | and fla) = jor over the
same range of values of o,

We provide some numerical values for Efa):

a Ele) o Efa)
£1 £0.333 +0.5 +0.167
09 403 04 40133
+0.8 £0.266 £0.3 40,1
£0.7 £0.233 20,2 £0.067
0.6 +0.2 0.1 0033

Therefore E(a) = E[H(X, ¥)1= % = p up to the third significant figure. We
are unable yet to assert that F(a) < §. Now we provide some numerical values for
Hix, v} and for comparison the joint p.d.f. f5(x, y) for @ = 0.99, see Table a

One can observe from the table above that small values of f,(x, ¥) correspond o
the small valvues of Hix, v) and vice verss, Roughly speaking, f.(r. v)is the prob-
ability that (X, ¥) takes values at the neighborhood of (x, ¥) and the conditional
probability of the event *X takes values at the neighborhood of x, with the condition
that ¥ takes values at the neighborhood of ¥"isexpressed by fo(x, ¥). That is, small
value of f(x, ¥) corresponds to a weak dependence of X and ¥ at the point (x, ¥.

Tahle 3,
Some numerical values of (s, ¥iand pdf fix v)for o =099

o o X ¥ Fix.¥) Hixey o x ¥ fMx.y) Hizw
03 0o g 01 16 044 0se 02 o4 102 0,29

- o 02 )42 [ - 04 06 0% 0.31
ol 03 1312 03e 0F 05 1 033

0l 06 034 028 06 09 115 0.3%
01 0% 037 ol 0% 09 143 0.45

01 04 115 035 - 06 07 110 0.4

LI B |




Converscly, large value of Solx, ¥) corresponds to a strong dependence at the point
(x, ¥). Observe also that the values of £ and H are sensitive 1o the distances be-
tween the corresponding x and v, Comparisons given in Table 3 provide vet another
motivation of using above H(x, ¥) as a local dependence function,

3. Consider the Sarmanov-Lee bivariate density introduced by Lee (1996),

Jolx, y) = e A0+ ey (x)dra(v)], (2.9}
where Y (x) = x — . W2(y) = y = py, py = EX, ity = EVY. For uniform
marginals, (2.9) has the form

1 |
fg[-t.}'l=l+&(.r—i) (}'-i). - oo = 4, (Z.IG}

(Compare with the density comesponding to the p.d.f. of the FGM distribution with

uniform marginals given in the previous section). It is casy 1o ohserve that for

Jalx, )in LIV EX | ¥ = y) = IFRO-D.EY | X=x)= I+ fx=1),
(X, ¥ o

p= n:':xﬂ'r = 13- Thus

etallx-§)(y-)

.'flz +al(x - %}’ﬁ%ﬂr’{y - 1'}2-

Hir. y) =
Consider

| |
E[H(X. 1= E:r{u)=-ff Hiz, y) falx, y)dxdy
[ ]

=fl]l|u+a1(*—:‘zlllf‘5}| ’”lx—z‘}u-mm}.‘

0o ‘,/|_3+,z(_\-_é}’ﬁ+a1(y -y’
One has
11
B ——
1 1

. (x-Hlr-4) d

v ojofﬂaz{r:’rfﬁwzir-i}:& I
|y (x= 1y - ?

i drdy. (211
ufﬂf\/]}-ﬁw!{x—‘.‘f}:ﬁiﬂr!h’“i}: JJ }

One can check that
1
1 | 48 § o? + o
j‘——————-_1 dr = - In ‘.-"'-____-_I__ {2.12)
b VI2+ei(x—)) * Vital-a
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I
r=1

f—-——_______i - dx = 0, (2.13)
5 ,.-"12+n2[:- 1)

142
- B I
(x - 1) = P a,f'43+uz_24'n-—_s_+_"_;"_” . (2.14)
e ] T
/ 12+nf:[.t--";_]'2 - 4B 4ot — g

Therefore from (2.10), (2.1 10.¢2.12) and (2.13) one has

— 2 ———y z
Exle) = l |“——4E:_“_‘_+_E .4._'_._ mug.,.u-:_;g.”n—ﬂjf_iﬂ' :
o VAR 4 ol _ 16 VA ol

The Taylor expansion of Ez(a) about o = 0y js
o l:!"s QT ]
o — ———— A b3
Eale) = 55 1242160 * 53060800 + °@”) i
Therefore Exlo) is approximately equal 1o £ = f5. In facl comparing (2.8) and
(2.15) we ohzerve that for the Sarmanoy family ETH X, ¥1] is even closer 1o the

4. Consider the following bivariate distribution of exponential type due to Ahra.
hams and Thomas (1994) and Arnold and Strauss (1988) with joint p.d.f.

falx, y) = kexp(—x - Y=8xy), O<xy<co g 20, (2.16)

where £ = Ec:p{—g'.'leiféJ' and Ei(w) := P v='e"du. An important featyre
af this distribution is that the conditional distributions are exponential distributions
while the marginals are of a simple form proportional 1o (14 05)-1g=x.

Sx(x) = ke™*(] + 8x), Ir(y) = ke~ (] + 8y).
Below we present Eraphs of fa(x. v) ford = land @ = 1.

It is evident (hay
Jatx, v} —r {1y
(x| ¥ = :I=—-———=|‘|-f-|':5|'t!Jr -
f i friy) 4,
and
=x) =AY _ =»{l44x)
ffyi-k'—ﬂh———-f;m (1 + Bxje ;
Therefore
s ]
EX|V¥=y)= fxu +0y)e™ 0 gy = +8y)°
[ 1]

L=l

E(}*|.1:=;1=fyrr+ex:|:—-'”””dy={|+mr'.
i}



o AR G D, RO

One can easily check that

&
et -l —F ‘.] 1 k_-E—I _k"l
E.k'._tf.rﬂ+-ﬁ'.x,1 e T dxm (E—I:I(E)J:F)EE = T E¥ = -_H_
0
and
r 1 & 1o
2 2 o=t g o (Bl INad Eoah®o el L 1
EX kf:ff-i—ﬁ'x} e dx..(ET(H)e -0 n)ﬂ_.‘_k(g ei)"'n?
]
{mote the definition of & presented above), Therelore
11 E?
Var(X) = Var(¥) = "(E + ;ﬁ} - .
Also EX¥:
ml'n L= -]
EXY =kffxyc_"""?”d;d}r=kff.x}-c'?c-ﬂlﬂwdxdy
o n [CA i}
[==] o
='|'.f},c—'r [fxc_'{”#"]dx} dy
] bt
T 1 1=k
ye~r k | - |
= k - = — il = l* =i = -ﬁ — - —
f{l+&}‘]3d} g-"(ﬂEr(Q)E +Fl(ﬂ_]c 9) 5] +ﬂ,
o
Therefore
. k=i |
Cav{X.}}-——Ex:-'—EXE}*=T+E and
k=ktyp
T Iy £
We have
koo I
V=EX—E(X|¥=y)== — - — d
Ex(y) (X 1| ¥) ¢ I an
B =EY —E(¥ | Xma)= K _1_ !
s z % e 8 I +dx

Then using (1.2) the local dependence funetion can be written as follows:
F-140) + (5~ o) (45 - )

Hix.y) = T ——7—=__ an
e+ (5 ) e+ (5 )

Calculations show that the x* = ¥" = 0.853 is the saddle point of (2.17) for @ = 0.1
and £* = y* = 0.477 is the corresponding point for = 1. Graphical representa-
tions of the density (2.16) (not available in the literature) are presented in Figure 4.



On Local Dependence Function for Multivariare Distributions 41

Figure 4, Graph of fair, ¥Hord = | and @ = 1p vermes | € x v 2 0,

Tahle 4.

Some numerical valses of Hix. ¥) for fo0x, ¥R forf = |
x ¥ Hirwy) ¥ Hicy x Y Hiz.y) = y K ¥}
1] 0 0047 | I =018 2 2 002 4 4 012
i I -03s 2 -0 2 4 0 4 5 03
1] F i o B I -0z 2 10 0087 4 p oI7s
0 I —pwe 4 -0ftme 2 20 010y s 5 0iss
i 4 —pa4 1 5 -0mss 3 10 oy 5 6 D169
L] 3 o417 | 1 —0Naa 3 k| 0065 5 [0 @ 195
] 10 —paza I 20 -0mz 3 5 002 & & 0182
0 0439 1 g =002y 3 1o Dl & 10 D20

In the Table 4 are some numerical values for Hix, y):
f=1(k= L6637, p= =249, x* = ¥=0477 Hix*. )= =0.249)

Note that although o is negative, in this case H(x, ¥} may obtain positive values
for large values of and v, For small values of x and y Hix, v)is negative and its
absolute value may exceed the absolute vajye of p,

5. Fimally consider Gumbel's bivariare exponential distribution (Gumbel 1960):
Frylr.y)mt —er _o=r e Y y=0.0g0<1.

The p.d.f. is

Srr(e.y) = e~ Y0 (1 4 621 +6y) ).
One can check that

EYIX=x)=(+p+0mn0 +6x)"% and

EX1Y=y) =140 +0y)01 +0y)-2.
The Pearson correlation coefficient js;
p=0""edEia=") = | m -1 _ I,



Figure 5, Graph of Mz, ¥} for 8 = 001 11210 for the density (216}



where, as in previous case, k = 7 expl -é };Ei[a]_ Ei(u) ;= f:‘* v="e=*du. Thus
e el ey ieliy-1)
k I+ {14+8x) {144y}

atictae—1) B2vt 4 v—1) )
L s J‘ + [1pw)?

Hix.y}= (2.18)

In the Table 5 some numerical values of Ff (x, ¥), calculated by (2.18), are given,

Table 5,
Some mumerical values of H{r, ¥} for Gambel's exponential distribution for @ = | and # = 2

x y My = ¥y Ny 2 y Hay =x ¥ MHixy
B=1{k = 1677, p = 040, 2* = »* = D618, Hix* y*) = —0.404)

o 0 0149 1 I =032 2 35 ol 3 0081
0 1 =0308 | 5 -0115 2 10 oM 3 100 0.005
¢ 3 -03 1 W -009 3 3 ooz 4 4 0.07
o n -0 2 2 -005% 1 & onee 4 10 i Li ]

B 2k =2167, p=—0539 2" = y* = 0618, Hiz*, ¥*) = —0,539)

o 0 QI3 0 10 0245 1 10 =032 2 10 0236
o 1 =087 1 I -D&a4 2 2 -0 3 3 0216
0 5 =-0243 1 35 =035 2 5 =023 3 10 -=-0212

The values of H(x, y) for this distribution are different from these presented in
previous section, This is due 1o the fact that the marginals {but not the conditional
distributions) are exponential,

3. AN ESTIMATE H(X.Y)

We shall briefly indicate here the manner in which & (x. ¥) can be estimated from
the data available. Evidently our proposal requires further investigation. Formula
(1.3) suggests a possible estimator for local dependence function H(x, ¥). In 1964
MNadaraya and Watson independently proposed the following estimate for the regres-
sion functions E(X | ¥ = y)and E(¥ | X = 1)

] A
5 xir et £ rECRR
AP () = =2 and Ay (x)="Z———
L KR 2L
i=1 iml
where (X;, ¥j).i = 1,2,...  n are the data, X is a kernel function, an integrable

function with short tails, and by, — 0 is a width sequence tending to zero at appro-
priate rates. Now a “natural” estimaie for Pearson correlation coelTicient is given

by

o = ny X -3 X3, Y
JrE X2 (T X n T, ¥ - (T, 1)




= TLarefore we suggest the following estimate for 4 (x, ¥} <

L = =i
) o R=AF T - A8 ey
£+
H™(x, y) = S0 —, (3.1)

where X = 13, X, 7= L ¥, V8% = i SiXi=X)? and 53 = ot (Y=
P2 Asymptotic bias and variance properties of H™(x, v} follow from the proper-

ties of estimators o™, Af{-”( ¥) and .-{f,f"rx} which are widely studied in the literature,
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