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Let G {Ga,a E 91} be some class of general populations with distribution
functions Fa(u) (a 91), x, x,..., Xan being a sample from the general population
Ga, obtained by a simple sampling and xaan observation from Ga, independent of the
sample x,..., xn. Consider two measurable functions of n variables, fl (Ul, u2, Un)
and f2(Ul, u2,’’’, Un), satisfying the inequality fi (Ul, u2,’", Un) = f2(ul, u2, "’", Un)
(for all (tl, t2, "’’, ?An) e Rn).

With the help of the functions f (u, u2,..., Un), f2(u, u2,’", Un) and the sam-
ple x,...,x the random confidence interval J (f(x,...,Xan),f2(x,...,x))
(a 92) may be constructed for the bulk of the distribution of the general population
G.

DEFINITION 1. A random interval J (f (x,..., x), f2(x,..., xg)) is called
a confidence interval for the bulk of the distribution G with invariant significance
level 1 -0 in the class ( (or simply an invariant significance interval for the class G)
if

P(x e Ja)= P(/l(X,".,x) < x < f2(x,’",Xn)) 0 (Va e ).

Note. The definition of an invariant confidence interval admits the cases when
f(u,..., Un) =- -oc or f2(u,..., Un) --- c; such invariant confidence intervals are
called one-sided in contrast to two-sided, when neither f(u,...,Un) -oc nor

Thus invariant confidence intervals in the class G have the significance level 7
1 0, which does not depend on the population G G. The main objective of the
paper is to clarify the construction of invariant confidence intervals for the class Gc
of general populations with continuous distribution F(u), and also to find the set of
significance levels corresponding to all possible invariant confidence levels for the class
Gc.

Invariant confidence intervals for the class Gc were found for the first time in
[1]; to describe these intervals we denote by x(1) __< x(2) =< _-< X(n) the varia-
tional series [2], constructed according to the sample x,x2,...,xn; then the functions
f(Xl,’’’,Xn) X(i) and f2(x,’",Xn) x(j) (i < j), where x(i) and x(j) are the
ith and the jth order statistics, respectively, define an invariant confidence interval
J with confidence level 0 (j i)/(n + 1):

(VG E Gc).

It turns out that there is no other invariant confidence interval for the class Gc;
more precisely, the following theorem holds.

THEOREM 1. Let f (x,..., Xn) and f2 (x,..., Xn) be two continuous symmetric
.functions satisfying the inequality

:I(Xl,’’’,Xn) f2(Xl, "’’,xn),
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16 I. G. BAIRAMOV AND YU. I. PETUNIN

which coincide only on a set in Rn of Lebesgue measure zero. A two-sided confidence
interval Ja (fl(x,.. ",xn),f2(x,’",Xn)), containing the bulk o the distribution
o] the general population Ga with confidence level 8 is invariant ]or the class Gc of the
general t.)pulations with continuous distributions i and only if f(Xl,... ,Xn) x(),
f2(xl,"" ,Xn) X(j), where < j and x(i), x(j) are some order statistics constructed
]rom the sample X Xn.

For the sake of brevity the proof of the theorem will be given for n 2; in the
ce of arbitrary natural n > 2 the proof is quite similar. So let Xl, x2, x3 be a sample
from a general population G Gc with cominuous distribution function F(u) and
let f (u, u2), fu(u, u:) be some functions satisfying the conditions of the theorem.
Define the functional g(F) on the set c of all continuous distributions F(u) in the
following way:

F(f(l,:)) F(S(I,U)) F(u)F().

Denote by C(-,) the vector space of all cominuous bounded functions, de-
fined on the real line R1. It is obvious that the set c C C(-,) is convex.

DEFINITION 2. The derivative of a functional h(F) defined on a convex set M of
a vector space E at the point F0 M in the direction of F1 M is the value

(Fo+.(F-Fo))-(Fo)
hF (Fo) lim

0
0<<i

The following obvious sertion is vlid.

()

LEMMA 1. Let the iuncfionl g(o, P) on the Cartesia product c c oi the
sf o oi all continuous distribution ]unctions be defined by the iormula

moreover, let its restriction to the diagonal of the Cartesian product g(F) g(F> )
b a coa() A*, ( me). g h,, a ar (,) mc mc h tha

(,) O, h, io, ach (o,) mc mc, hum(o,) hod.
Prooi. By virtue of Lemma 1, e obtain
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whence

+

According to the conditions of the theorem there exist distributions F, F such that
g(, )--0; thus, in view of (3) we have

so that A* =< 1/2. Assume
5 sup {g(Fo, F1): (Fo, FI) e .T’c .T’c},

and let e be an arbitrary positive number. Choose the distributions Fe, Fe so that

5 < (Fe, Fe)+ s; then, according to (3),

and hence 2(6- e) =< 3A*. This inequality and A* =< 1/2 yield 6 =< 1/2 + and, due to the
arbitrary choice of e > 0, 6 =< 1/2, which completes the proof.

Let u (u, u2,..., Un) be a random point in the n-dimensional Euclidean space
Rn and u() _<_ =< u(n) a permutation of the coordinates of u according to increasing
order.

DEFINITION 3. A function of n variables (n __> i) having the form

(u, u,..., u) u()

is called a fundamental ith symmetric function.
The proof of the theorem will now be carried out by contradiction: assume that

at least one of the functions f(u, u2) and f2(ul, u2) is not a fundamental symmet-
ric function. Then, by virtue of results of [3], it follows that neither fl(Ul, u2) nor
.f2(ul, u2) coincides with any of the fundamental functions (u, u2), 2(u, u2):

(4)

As a matter of fact, if at least one of these functions (for example, fl(Ul,U2)) does
coincide with some fundamental symmetric function (for example, with (ul, u2)),
then the one-sided confidence interval

{ < f:(x,x:)} {s(z,x) < x </(,x)} {x <=
being the union of two invariant confidence intervals, is also an invariant interval;
thus, in view of a theorem in [3], f2(u, u2) u(2), which contradicts the inequality
f2(u, u2) - 2(u, u2). Hence, by the assumption, f(ul, u2) = u(i), .f2(u, u2) #- u(i)
(i 1, 2). Assume

M(f) {(u,u2): f(u,u2) =/= (ul,u2)},

M2(f) ((ul,u2)" f(u,u2)
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It is easy to see that Ml(fl) and M2(fl) are open sets, their intersection M(fl)
M(fl)N M2(f) being also a nonempty open set. Denote

T {(u, u2)" f (Ul, u2) f2(Ul, u2)}.
According to conditions of the theorem, the set T has Lebesgue measure equal to
zero; thus, M(fl)\T is not empty. Indeed, suppose that M(fl) C T; since M(fl)
is a nonempty open set, there exists a ball S(x, e) C M(fl) C T, which contradicts
the fact that the Lebesgue measure of T is equal to zero. Thus there exists a point
(hi,a2) e M(fl)\T(a(1) < a(2))"

fl (el, a2) ? (fli(a, a2), (i 1, 2), fl(al, a2) </2(al, a2).

Assume first that f2(al, a2) i(al, a2) (i 1, 2). Let A fl(a, a2), B f2(al, a2),
where A < B; then, for some e > 0, the intervals (a(1)- e, a(1) + e), (a(2)-
(A e, A + e), (B e, B / e) are mutually disjoint. According to the conditions of the
theorem, the functions fl(Ul, u2) and f2(ul, u2) are continuous and symmetric; thus,
it is possible to choose an el E (0, e) such that

A-e<=fl(u,u2)<=A+e and B-e<=f2(Ul,U2)<=B+e

for any (Ul, u2) from the square K { (Ul, u2)" a() el =< u =< a(1) + el, a(2) e =<
u2 -<_ a(2) + e }. By construction, all the intervals (d e,d +
(a(1)- el,a(1)+ e), (a(2)- el,a(2)+ el) will be mutually disjoint. The following
arrangements of the midpoints of these intervals may occur:

1. A < a(1) < B < a(2), 4. A < a(1) < a(2) < B,
2. a(1) < A < a(2) < B, 5. A < B < a() < a(2),
3. a(1) < A < B < a(2), 6. a(1) < a(2) < A < B.
Consider the alternatives 1 and 2 first. Let us show that in these cases two

pairs of distributions may be constructed: F0, F1 and F2, F3, for which g(F0, F1) 0,
g(F2, F3) 1. This contradicts Lemma 2. In case 1, one can take as Fo(u) the uniform
distribution in the interval (a(.)- el, a(2) + el) and as Fl(u) the uniform distribution
in the interval (a(1)- el, a(1) + el); then

ince i(,) e (A , A + ), i(,) e (B , B + ) for n: (,) e K.
Assuming now that F2(u) F (u), F3(u) Fo(u), we obtain

9(F, Fa) F1 (J’(Ul, u)) F (I1 (u, u)) dl du 1,

since F1 (fl (Ul, u.)) 0 for any (u, u2) K, and F1 (f2(ul, )) 1.
In case 2, we select as F0() the uniform distribution in the interval (a(ll el,

a(1) + e), and as F (u) the uniform distribution in the interval
moreover, 9(Fo, F) 0. Substituting now F(u) for F2(u) and Fo(u) for F3(u), we
obtain 9(F2, F3) 1.

The subsequent reasoning will be based on the following lemma.
LEMMA 3. Let (Xl,X2,X3) be a sample from a general population with continu-

ous distribution and f(ul, u2), f2(u, u2) continuous symmetric ]unctions, .forming
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an invariant confidence interval J (fl(xl,x2),f2(Xl,X2)) for the class JzC of all
continuous distributions. If there exists a point (al,a2) E R2 such that the intervals
(A ,A + e), (B e,B + e), (a(1) el, a(1) + el), (a(2) el, a(2) + el) are mutually
disjoint for some e, el > O, where d fl(al, a2), B f2(al, a2), a(1) min(al, a2),
a(2) max(el,a2), then 0 < A* P(x3 e J) < 1.

Proof. Denote by [a, b] the minimal segment containing all the intervals (A-e, A+
e), (B , S + ), (a(1) , a(1) + 1), (a(2) 1, a(2) + 1). Consider the distribution
F(u) with the following properties:

1. F(u) =O if u $ a; F(u) l if u b.
2. The function F(u) is linear on the segments [a(1)-1, a() +], [a(2)-1, a(2) +

], and F(a(1) + ) F(a(1) 1) F(a(2) + 1) F(a(2) 1) .
3. The function F(u) takes on the constant value c0 on the segment [A , A + ]

< Cl c0 < 2and the constant value Cl on the segment [B , B + ], where .
4. To the other points of [a, b] the function F(u) is extended continuously (for

example, linearly).
One may observe that such a distribution function exists for any arrangement

of mutually disjoint intervals (d ,d + ), (B ,B + ), (a(1) 1, a() + 1),
(a(2) ,a(2) + 1) on the segment [a,b].

Let x, x2, x3 be a sample obtained by a simple sampling from the general popu-
lation G with distribution F(u). Then

where K {(Xl,X2)" a(1) el _-< Xl =< a(1) + el, a(2)- e <= x2 < a(2) + el } and CK
is the complement of K. On the other hand,

The lemma is proved.
Let us now go over to the study of alternative 3. Consider the distribution Fo(u),

which is uniform in (a(1)- el, a(1) / el), and the distribution F1 (u), which is uniform
in (a(2)- el, a(2)+ e). Then
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This and equality (3) yield

F1 (f.(u,, u.)) a (fl (u,, u.)) du, du. 3A*.(5) J 4-12 a(1)-1

By Lemma 3, the probability A* lies in (0, 1) provided that (fi(Xl,X2), f2(Xl,X2))
is an invariant confidence interval; thus, the equalities A* 0 or A* 1 contradict
the conditions of the theorem.

Denote A f(a(),a()), U A(a(),a()). If A U, then for the uniform
distribution in the interval (a() -e,a() + ) the probability A* equals to zero.
Assume A
B holds. The following arrangements of a(x), a(2), B, A are possible:

1. A < B < a(2); then

fa()+/a()+[
a(1)--$1 a(1)--$l

1 Ia(1)+’1 Ia(1)+’1 FI(S.(I, U2)) tl (Sl(Ul, 2)) dul d2 O,

since FI(S2(ui, u2)) 0 and Fl(fl(Ul, u2)) 0 if (Ul, u2)
(a(i) el, a(1) + el), u2 E (a(1) el, a(1) + 1)}. This and formula (5) yield A* O.

2. a(2) < A < B; moreover, J 0, since F (S=(u, u2)) 1 and F (f (Ul, u=))
1 if (Ul, u2) E K1; thus, due to (5), A* 0.

3. a(1) < A1 < a(2) < B1 and A1 < a() < a(2) < B1. For these ces consider a
sample (Xl,X2,X3) from the general population with distribution Fo(u); then

A* P(za (fi(zi,z2) f2(zi,z2))}

0 if a(1) <A <a() <B,
1 if A1 < a(1) < a() < B1.

4. A a(1), B1 (). Under these conditions, a sample from a general popu-
lation with distribution Fo(u) satisfies

1

4
0 if a() <A1,

1 if a(1) > A1.

Assume now that A a(1), B a(2). Set A2 f(a(2),a(2)) and B2
f2(a(2),a(2)). If A2 # a(2) and B2 # a(2), then a uniform distribution in the inter-
val (a(2) 1, a(2) + el) satisfies the equality
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Suppose now that A2 a(2), B2 a(2) or A2 = a(2), B2 a(2), or else A2
a(2), B2 - a(2). Let - {Ga, a e [0, 1] } be the class of general populations with
distribution functions Fa(u), (a e [0, 1]) of the form

-(a()-e) if a() 1 < u < a(1) + 1,

(1 a) :(()-e) + a if a(2) 1 < u < a(2) + 81,2el(6) Fa(u)= 0 if u<a()-e,
a if a()- < u < a(2)- ,
1 if u > a(2) --1.

Denote

K2 {(u,u2): u e (a(2)- ,a(2)+ ), u2 e (a(2)- ,a(2)+ )},

K3 { (u, u2)" u e (a(2) , a(2) + ), u2 e (a() , a() + )};
recall that

g { (Ul, u2)" u e (a() , a() + ), u2 e (a(2) , a(2) +)}.
Let x,x,x be a sample from a general population with distribution F(a [0, 1]).
Then the following equality holds:

p{x e (](?, ), (x,x)) }
P{xg e ((x?,x),(x?,x)), (x,x) e g}
+ P{zg e ((z?,xg),(x,x)), (x?,x)e g}

(V) + P{ e (l(,x),f(x,x)), (x,xg)e g}
+ P{xg e ((x?,),(,x)), (x?,xg)e K}
P{x e (l(X,Zg),(x,x)), (x,x) e g}
+ P{x e (f(x,x),(,x)), (x?,xg)e g}.

rthermore,

(8) f/K [ga(f2(l,2))- ga(fl(l,2))] dga(l)dga(u2)

where

Fa(f2(ul,u2)) Fa(fl(ul,u2)) dul du2.B1
a(ll-Sl a()

Similarly,

() ( )
4e [F(f2(ul, 2)) ga(fl(l, 2))] dl d2 (1- a)2B,



22 I. G. BAIRAMOV AND YU. I. PETUNIN

where

B 1 a(2)+el fa(2)+el[Fo(f2(,al,U2))_Fo(fl(Ul,U2))]duldu2
-$1 a(2) -$1

Using equalities (7), (8), and (9), we obtain

.2 /f [Fa(f2(u u2))--Fa(fl(l 2))] dldu24e

r + ( (,

where B{* > 0, B > 0. It is obvious that the expression (a) a2B + (1 c)2B
depends on a contradicting the conditions of the theorem. Thus, the theorem is proved
for case 3. Its proof for cases 4, 5, and 6 is carried out analogously.

Let now A fl(a:,a2) =/= a(.) =/= a(2), B f2(a.,a2) a(2); then one can assume,
without loss of generality, that in some neighbourhood g {(ul, u2)" u e (a(1)-
l,a(1)-}-el), u2 e (a(2)- 1,a(2)q-el)} of the point (hi,a2) the function f2(ul,u2)
coincides with the fundamental symmetric function: f2(ul, u2) u2 V(u, u2) E g.
Choose > 0 and < in such a way that the intervals (A- ,A + ), (a()
1,a(1) + ), (a(2)- ,a(2)/ 1) do not intersect and A- < f:(u,u2) <= A + ,
a(2) e _-< f2(Ul, u2) -<_ a(2) + e if a() e < ul _<_ a() + el, a(2) el _-< u2 =< a(2) + e.

It is easy to see that Lemma 3 remains correct if the intervals (a() , a() /
1), (A , A + ), (a(2) , a(2) + 1) are mutually disjoint; thus, in this case

(10) 0<A*<I.

(11)

Suppose first that there exists a point (a, a) lying on the diagonal such that

A f (a, a) a, B1 f2(a, a) a.

Reducing if necessary the numbers e, s, one can achieve it that the intervals
(fi.l-,fi. +e), (-e,/ +e) do not intersect (a-e,a+e), and that f(ul,u2)

5
Consider the distribution F(u), which is uniform on the segment [a s, a + eli;

then the sample x,x2,xa from the general population with distribution F(u) satisfies
the equality

f(f2(ul, 2)) F(fl (1, 2)) dul du24 a_e a-e

{ 0 if A1 <a<B,
1 if a (1, 1);

and that contradicts the inequality (10).
If the conditions (11) are not satisfied the two following alternatives occur:
1. I (, ) , I(,) e 1,
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2. f2(u, u) u at the points (u, u), where fl(U, u) u.

Consider first case 1. Choose 1 > 0 in such a way that all the previous relations in
which el occurs are satisfied and, moreover, f(Ul, u2) e (a(i)--, a(i)+), f2(Ul, u2) e
(a(i)--,a({) +)if (Ul,U2) e {(tl,U2): Ul e (a()--l,a(i)+1), u2 e (a(i)--l,a(0 +
1) } (i 1, 2). Let F1 (u) be a uniform distribution on the interval (a(2) 1, a(2) + 1)
and F2(u) on the interval (a(1) 1, a() + 1). Then, by formula (2),

thus,

1
(12) A*

3"

Let now Fi(u) be a uniform distribution in the interval (a(i) el, a(i) + 1) (i
1, 2). Using formula (2) as in the previous case, we obtain

3A*

,_ 2 if A < a( which contradicts the equalityHence, A* 0 if A > a(), and A ),
(12).

We pass now to the study of case 2. Condition 2 implies that one of the following
relations holds at the point (a(2), a(2)):

(a) f! (a(2), a(2)) a(2), f2(a(2), a(2)) > a(2),
(b) f2(a(2),a(2))= a(2), f(a(2),a(2))< a(2).
Since conditions (4) do not hold in this case, the function f(u,u2) is equal to

u(2) in the points where f(u,u2) : u(1), f(u,u2) u(2). Consider case (a). We
have fl (a(2), a(2)) :/: a(2), f2(a(2), a(2)) a(2), where the last equality may be assumed
to hold in some neighbourhood K2 { (Ul, u2): a() - _<_ Ul _-< a(2) + el, a() -el __<
u2 -<_ a(2) + el} of the point (a(2),a(2)). Let G[a(.)-el,a(2)+el] be the class of general
populations with continuous distribution functions which are concentrated on the
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segment [a(2) --El,a(2) 4- Eli. It is clear that, for this class of distributions,

where the first integral, as it was shown in [3], does not depend on the distribution
F(u) of the general population G E Gl[a(2)-l,a(.)+l], while the second one varies
depending on F. Hence, we arrive at a contradiction, since (fl(xl,x2),f2(xl,x2)) is
an invariant confidence interval.

Case (b) is analyzed similarly.
For an arbitrary natural number n > 2 the proof of the theorem is carried out

using the procedure introduced above by analyzing various arrangements of the points
A, B, a(1),"’, a(n) which are analogous to alternatives 1-6. For example, consider one
of the most general cases, when there exists a point (a, a,..., a) E Rn such that

(13) D1 fl(a,a,...,a) 7 a,

D2 f2(a,a,...,a) 7 a.

Then, for D1 -7/= D2 one can choose an E > 0, for which the intervals (a-
(O1 E, O1 4- E), (02 E, 02 4- E) do not intersect (or, if O1 02 D, the intervals
(a E, a 4- E), (D E, D 4- E) do not intersect). Since the functions fl(Ul, u2,..., Un),
f2(Ul,U2,"’,un) are continuous according to the conditions of the theorem, there
exists, for any E > 0, an E1 (0, E) such that

(14) D1 -E =< fl(Ul,U2,’",un) <-_ D1 4- E,

D2 E <__ f2(ul,u2,’",u,) <= De + E,

for all (u1,?A2,...,ttn) e II-- {(Ztl,U2,’’’,n): a--E1 =< Ul _-< a+E1,’",a--E1 <= un <-_
a 4-El}.

Consider a distribution Fa (u) which is uniform on the segment [a- El,a 4- El]. Let
Xl,X2,... ,Xn, x be a sample from the general population with distribution function
Fa(u); then conditions (13), (14), and the definition of Fa(u) imply that

P{x (fl(Xl,’",Xn),f2(Xl,*",Xn))}
Fa(S2(l,"" n)) Fa(Sl(tl,"" Un)) dtl...dun(21)n a--e a--e

0 if D1 < a, D2 < a or D1 > a, D2 > a (D < a),
-1 ifDl<a, D2>a (D>a),

since either Fa (f2(ul,’", Un)) Fa (fl (?1,’’’, ttn)) 0 or Fa (f2(Ul,’’’, Un))
Fa(fl(Ul,’",Un)) 1, depending on the arrangements of the points O1 and 02
(D) for (ul, u2,’", Un)e H, contradicting Lemma 3.

The theorem is proved.
Note. A result analogous to Theorem 1 has been obtained by Robbins for non-

parametrical tolerance intervals ([4], 2.6); however, these theorems are only slightly
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related and do not imply each other. Moreover, the proof of Robbins’ theorem is much
simpler than that of Theorem 1.

Let G {Ca, c e 92} be an arbitrary class of general populations, {Jr(x1,
x2,... ,xn), t E T}, (n N) the set of all invariant confidence intervals for the
class ( and (G) {/t,n P{xa e Jt(xl,...,xn), t e T, x e Ca}} the set
of all confidence levels, corresponding to the confidence intervals Jr(x1, x2, ,Xn).
Theorem 1 and the equality

j-iP(x (x(i),x(j)))
n + 1 (i < j, i,j e (1,2,...,n})

immediately yield the following corollary.
COROLLARY. The totality 98((c) of all confidence levels corresponding to all

possible invariant confidence intervals, satis]ying the conditions of Theorem 1 .for the
class (c of general populations with continuous distribution ]unctions is the set of all
rationals from the interval [0, 1]: 3(Gc) [0, 1] Q.

THEOREM 2. Let (x,x2,-.. ,x) be a sample from the general population G with
continuous distribution, obtained b means of simple sampling, let J (f (Xl,..., x),
f2(x,... ,x)) be an invariant confidence interval constructed from the sample values
x,...,x,, satisfying the conditions of Theorem 1, and let Xn+, X,+2,’’’,Xn+m be
subsequent sample values from the general population G. Then,

n!(m + s- r 1)!P(x,+l,"’,Xn+m e J) (s- r- 1)!(m + n)!’
where r < s; r,s {1,2,...,n}.

Proof. Indeed, by virtue of Theorem 1, the invariant confidence interval J for
the class of continuous distributions has the form J (x(t),x(s)), where r < s; r,s
{1, 2,..-, n}. Furthermore, the joint density function of the uniform order statistics

5(r) and 5(s) is determined by the formula

v)
n

(r- 1)!(s r 1)!(n- s)!
ztr-l(v_ lz)s-r-l(l v)n-s

(0 =< u < v _< 1); thus, the following equality holds:

fo Ju Ztr-I(v u)S-r-l(1 V)n-s (r 1)!(s r 1)!(n s)!/n!.
P

dv du

Taking Smirnov’s transformation into account, we obtain



26 I. G. BAIRAMOV AND YU. I. PETUNIN

The theorem is proved.
COROLLARY. Under the conditions of Theorem 2, the equality

P(xn+l,xn+2,"’,Xn+m,." E J) 0

holds.
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