STRUCTURE OF INVARIANT CONFIDENCE INTERVALS CONTAINING THE MAIN DISTRIBUTED MASS*

I. G. BAIRAMOV AND YU. I. PETUNIN

(Translated by A. E. Shemyakin)

Let $\mathbf{G} = \{G_{\alpha}, \alpha \in \mathfrak{A}\}$ be some class of general populations with distribution functions $F_{\alpha}(u) \ (\alpha \in \mathfrak{A}), \ x_{1}^{\alpha}, x_{2}^{\alpha}, \dots, x_{n}^{\alpha}$ being a sample from the general population G_{α} , obtained by a simple sampling and x^{α} an observation from G_{α} , independent of the sample $x_{1}^{\alpha}, \dots, x_{n}^{\alpha}$. Consider two measurable functions of n variables, $f_{1}(u_{1}, u_{2}, \dots, u_{n})$ and $f_{2}(u_{1}, u_{2}, \dots, u_{n})$, satisfying the inequality $f_{1}(u_{1}, u_{2}, \dots, u_{n}) \leq f_{2}(u_{1}, u_{2}, \dots, u_{n})$ (for all $(u_{1}, u_{2}, \dots, u_{n}) \in \mathbf{R}^{n}$).

With the help of the functions $f_1(u_1, u_2, \dots, u_n)$, $f_2(u_1, u_2, \dots, u_n)$ and the sample $x_1^{\alpha}, \dots, x_n^{\alpha}$ the random confidence interval $J_{\alpha} = (f_1(x_1^{\alpha}, \dots, x_n^{\alpha}), f_2(x_1^{\alpha}, \dots, x_n^{\alpha}))$ $(\alpha \in \mathfrak{A})$ may be constructed for the bulk of the distribution of the general population G_{α} .

DEFINITION 1. A random interval $J_{\alpha} = (f_1(x_1^{\alpha}, \dots, x_n^{\alpha}), f_2(x_1^{\alpha}, \dots, x_n^{\alpha}))$ is called a confidence interval for the bulk of the distribution G_{α} with invariant significance level $1 - \theta$ in the class **G** (or simply an invariant significance interval for the class **G**) if

$$P(x^{\alpha} \in J_{\alpha}) = \mathbf{P}\big(f_1(x_1^{\alpha}, \cdots, x_n^{\alpha}) < x^{\alpha} < f_2(x_1^{\alpha}, \cdots, x_n^{\alpha})\big) = \theta \qquad (\forall \alpha \in \mathfrak{A}).$$

Note. The definition of an invariant confidence interval admits the cases when $f_1(u_1, \dots, u_n) \equiv -\infty$ or $f_2(u_1, \dots, u_n) \equiv \infty$; such invariant confidence intervals are called one-sided in contrast to two-sided, when neither $f_1(u_1, \dots, u_n) \not\equiv -\infty$ nor $f_2(u_1, \dots, u_n) \not\equiv \infty$.

Thus invariant confidence intervals in the class **G** have the significance level $\gamma = 1 - \theta$, which does not depend on the population $G_{\alpha} \in \mathbf{G}$. The main objective of the paper is to clarify the construction of invariant confidence intervals for the class \mathbf{G}_C of general populations with continuous distribution $F_{\alpha}(u)$, and also to find the set of significance levels corresponding to all possible invariant confidence levels for the class \mathbf{G}_C .

Invariant confidence intervals for the class \mathbf{G}_C were found for the first time in [1]; to describe these intervals we denote by $x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)}$ the variational series [2], constructed according to the sample x_1, x_2, \cdots, x_n ; then the functions $f_1(x_1, \cdots, x_n) = x_{(i)}$ and $f_2(x_1, \cdots, x_n) = x_{(j)}$ (i < j), where $x_{(i)}$ and $x_{(j)}$ are the *i*th and the *j*th order statistics, respectively, define an invariant confidence interval J_{α} with confidence level $\theta = (j - i)/(n + 1)$:

$$\mathbf{P}\Big(x^{\alpha} \in \big(x^{\alpha}_{(i)}, x^{\alpha}_{(j)}\big)\Big) = \frac{j-i}{n+1} \qquad (\forall G_{\alpha} \in \mathbf{G}_{C}).$$

It turns out that there is no other invariant confidence interval for the class \mathbf{G}_C ; more precisely, the following theorem holds.

THEOREM 1. Let $f_1(x_1, \dots, x_n)$ and $f_2(x_1, \dots, x_n)$ be two continuous symmetric functions satisfying the inequality

$$f_1(x_1,\cdots,x_n) \leq f_2(x_1,\cdots,x_n),$$

^{*}Received by the editors June 10, 1987.

which coincide only on a set in \mathbb{R}^n of Lebesgue measure zero. A two-sided confidence interval $J_{\alpha} = (f_1(x_1^{\alpha}, \dots, x_n^{\alpha}), f_2(x_1^{\alpha}, \dots, x_n^{\alpha}))$, containing the bulk of the distribution of the general population G_{α} with confidence level θ is invariant for the class \mathbb{G}_C of the general I-pulations with continuous distributions if and only if $f_1(x_1, \dots, x_n) = x_{(i)}$, $f_2(x_1, \dots, x_n) = x_{(j)}$, where i < j and $x_{(i)}, x_{(j)}$ are some order statistics constructed from the sample x_1, \dots, x_n .

For the sake of brevity the proof of the theorem will be given for n = 2; in the case of arbitrary natural n > 2 the proof is quite similar. So let x_1, x_2, x_3 be a sample from a general population $G \in \mathbf{G}_C$ with continuous distribution function F(u) and let $f_1(u_1, u_2), f_2(u_1, u_2)$ be some functions satisfying the conditions of the theorem. Define the functional g(F) on the set \mathcal{F}_C of all continuous distributions F(u) in the following way:

(1)
$$g(F) = \mathbf{P} \Big\{ x_3 \in \big(f_1(x_1, x_2), f_2(x_1, x_2) \big) \Big\} \\= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Big[F\big(f_2(u_1, u_2) \big) - F\big(f_1(u_1, u_2) \big) \Big] \, dF(u_1) \, dF(u_2).$$

Denote by $C(-\infty,\infty)$ the vector space of all continuous bounded functions, defined on the real line \mathbb{R}^1 . It is obvious that the set $\mathcal{F}_C \subset C(-\infty,\infty)$ is convex.

DEFINITION 2. The derivative of a functional h(F) defined on a convex set M of a vector space E at the point $F_0 \in M$ in the direction of $F_1 \in M$ is the value

$$h'_{F_1}(F_0) = \lim_{\substack{lpha o 0 \ 0 < lpha < 1}} rac{h(F_0 + lpha (F_1 - F_0)) - h(F_0)}{lpha}.$$

The following obvious assertion is valid.

LEMMA 1. The derivative of the functional g(F) defined by the equality (1) on the convex set $M = \mathcal{F}_C \subset E = C(-\infty, \infty)$ at the point F_0 in the direction of F can be calculated using the formula

(2)
$$g'_{F}(F_{0}) = 2 \iint_{-\infty}^{\infty} \left[F_{0}(f_{2}(u_{1}, u_{2})) - F_{0}(f_{1}(u_{1}, u_{2})) \right] dF(u_{1}) dF_{0}(u_{2}) \\ + \iint_{-\infty}^{\infty} \left[F(f_{2}(u_{1}, u_{2})) - F(f_{1}(u_{1}, u_{2})) \right] dF_{0}(u_{1}) dF_{0}(u_{2}) - 3g(F_{0}).$$

LEMMA 2. Let the functional $g(F_0, F_1)$ on the Cartesian product $\mathcal{F}_C \times \mathcal{F}_C$ of the set \mathcal{F}_C of all continuous distribution functions be defined by the formula

$$g(F_0,F_1) = \iint_{-\infty}^{\infty} \left[F_0(f_2(u_1,u_2)) - F_0(f_1(u_1,u_2)) \right] dF_1(u_1) dF_0(u_2);$$

moreover, let its restriction to the diagonal of the Cartesian product g(F) = g(F, F)be a constant $g(F) = A^*$, $(F \in \mathcal{F}_C)$. If there exists a pair $(\overline{F}, \overline{\overline{F}})$ in $\mathcal{F}_C \times \mathcal{F}_C$ such that $g(\overline{F}, \overline{\overline{F}}) = 0$, then, for each $(F_0, F_1) \in \mathcal{F}_C \times \mathcal{F}_C$, the inequality $g(F_0, F_1) \leq \frac{1}{2}$ holds. *Proof.* By virtue of Lemma 1, we obtain

$$\begin{split} g'_{F}(F_{0}) =& 2 \iint_{-\infty}^{\infty} \left[F_{0}(f_{2}(u_{1}, u_{2})) - F_{0}(f_{1}(u_{1}, u_{2})) \right] dF(u_{1}) dF_{0}(u_{2}) \\ & + \iint_{-\infty}^{\infty} \left[F(f_{2}(u_{1}, u_{2})) - F(f_{1}(u_{1}, u_{2})) \right] dF_{0}(u_{1}) dF_{0}(u_{2}) - 3A^{*} = 0; \end{split}$$

whence

(3)
$$2g(F_0,F_1) + \iint_{-\infty}^{\infty} \left[F_1(f_2(u_1,u_2)) - F_1(f_1(u_1,u_2)) \right] dF_0(u_1) dF_0(u_2) = 3A^*.$$

According to the conditions of the theorem there exist distributions $\overline{F}, \overline{\overline{F}}$ such that $g(\overline{F}, \overline{\overline{F}}) = 0$; thus, in view of (3) we have

$$3A^* = \iint_{-\infty}^{\infty} \left[\overline{\overline{F}} \left(f_2(u_1, u_2) \right) - \overline{\overline{F}} \left(f_1(u_1, u_2) \right) \right] d\overline{F}(u_1) d\overline{F}(u_2) \leq 1,$$

so that $A^* \leq \frac{1}{3}$. Assume

$$\delta = \supig\{g(F_0,F_1)\colon (F_0,F_1)\in \mathcal{F}_C imes \mathcal{F}_Cig\},$$

and let ε be an arbitrary positive number. Choose the distributions $\overline{F}_{\varepsilon}, \overline{\overline{F}}_{\varepsilon}$ so that $\delta < (\overline{F}_{\varepsilon}, \overline{\overline{F}}_{\varepsilon}) + \varepsilon$; then, according to (3),

$$2(\delta-\varepsilon)+\iint_{-\infty}^{\infty}\left[\overline{F}_{\varepsilon}(f_{2}(u_{1},u_{2}))-\overline{F}_{\varepsilon}(f_{1}(u_{1},u_{2}))\right]d\,\overline{\bar{F}}_{\varepsilon}(u_{1})\,d\,\overline{\bar{F}}_{\varepsilon}(u_{2})<3A^{*},$$

and hence $2(\delta - \varepsilon) \leq 3A^*$. This inequality and $A^* \leq \frac{1}{3}$ yield $\delta \leq \frac{1}{2} + \varepsilon$ and, due to the arbitrary choice of $\varepsilon > 0$, $\delta \leq \frac{1}{2}$, which completes the proof.

Let $u = (u_1, u_2, \dots, u_n)$ be a random point in the *n*-dimensional Euclidean space \mathbf{R}^n and $u_{(1)} \leq \dots \leq u_{(n)}$ a permutation of the coordinates of u according to increasing order.

DEFINITION 3. A function of n variables $(n \ge i)$ having the form

$$\varphi_i(u_1, u_2, \cdots, u_n) = u_{(i)}$$

is called a fundamental *i*th symmetric function.

The proof of the theorem will now be carried out by contradiction: assume that at least one of the functions $f_1(u_1, u_2)$ and $f_2(u_1, u_2)$ is not a fundamental symmetric function. Then, by virtue of results of [3], it follows that neither $f_1(u_1, u_2)$ nor $f_2(u_1, u_2)$ coincides with any of the fundamental functions $\varphi_1(u_1, u_2)$, $\varphi_2(u_1, u_2)$:

(4)
$$f_i(u_1, u_2) \neq \varphi_1(u_1, u_2), \quad f_i(u_1, u_2) \neq \varphi_2(u_1, u_2).$$

As a matter of fact, if at least one of these functions (for example, $f_1(u_1, u_2)$) does coincide with some fundamental symmetric function (for example, with $\varphi_1(u_1, u_2)$), then the one-sided confidence interval

$$\left\{x_3 < f_2(x_1, x_2)\right\} = \left\{f_1(x_1, x_2) < x_3 < f_2(x_1, x_2)\right\} \cup \left\{x_3 \leq f_1(x_1, x_2)\right\}$$

being the union of two invariant confidence intervals, is also an invariant interval; thus, in view of a theorem in [3], $f_2(u_1, u_2) = u_{(2)}$, which contradicts the inequality $f_2(u_1, u_2) \neq \varphi_2(u_1, u_2)$. Hence, by the assumption, $f_1(u_1, u_2) \neq u_{(i)}$, $f_2(u_1, u_2) \neq u_{(i)}$ (i = 1, 2). Assume

$$M_1(f_1) = \{(u_1, u_2): f_1(u_1, u_2) \neq \varphi_1(u_1, u_2)\},\$$
$$M_2(f_1) = \{(u_1, u_2): f_1(u_1, u_2) \neq \varphi_2(u_1, u_2)\}.$$

It is easy to see that $M_1(f_1)$ and $M_2(f_1)$ are open sets, their intersection $M(f_1) = M_1(f_1) \cap M_2(f_1)$ being also a nonempty open set. Denote

$$T = \{(u_1, u_2): f_1(u_1, u_2) = f_2(u_1, u_2)\}.$$

According to conditions of the theorem, the set T has Lebesgue measure equal to zero; thus, $M(f_1)\backslash T$ is not empty. Indeed, suppose that $M(f_1) \subset T$; since $M(f_1)$ is a nonempty open set, there exists a ball $S(x,\varepsilon) \subset M(f_1) \subset T$, which contradicts the fact that the Lebesgue measure of T is equal to zero. Thus there exists a point $(a_1, a_2) \in M(f_1)\backslash T(a_{(1)} < a_{(2)})$:

$$f_1(a_1, a_2) \neq \varphi_i(a_1, a_2), \quad (i = 1, 2), \quad f_1(a_1, a_2) < f_2(a_1, a_2).$$

Assume first that $f_2(a_1, a_2) \neq \varphi_i(a_1, a_2)$ (i = 1, 2). Let $A = f_1(a_1, a_2)$, $B = f_2(a_1, a_2)$, where A < B; then, for some $\varepsilon > 0$, the intervals $(a_{(1)} - \varepsilon, a_{(1)} + \varepsilon)$, $(a_{(2)} - \varepsilon, a_{(2)} + \varepsilon)$, $(A - \varepsilon, A + \varepsilon)$, $(B - \varepsilon, B + \varepsilon)$ are mutually disjoint. According to the conditions of the theorem, the functions $f_1(u_1, u_2)$ and $f_2(u_1, u_2)$ are continuous and symmetric; thus, it is possible to choose an $\varepsilon_1 \in (0, \varepsilon)$ such that

$$A-arepsilon \leqq f_1(u_1,u_2) \leqq A+arepsilon \quad and \quad B-arepsilon \leqq f_2(u_1,u_2) \leqq B+arepsilon$$

for any (u_1, u_2) from the square $K = \{(u_1, u_2): a_{(1)} - \varepsilon_1 \leq u_1 \leq a_{(1)} + \varepsilon_1, a_{(2)} - \varepsilon_1 \leq u_2 \leq a_{(2)} + \varepsilon_1\}$. By construction, all the intervals $(A - \varepsilon, A + \varepsilon), (B - \varepsilon, B + \varepsilon), (a_{(1)} - \varepsilon_1, a_{(1)} + \varepsilon_1), (a_{(2)} - \varepsilon_1, a_{(2)} + \varepsilon_1)$ will be mutually disjoint. The following arrangements of the midpoints of these intervals may occur:

Consider the alternatives 1 and 2 first. Let us show that in these cases two pairs of distributions may be constructed: F_0, F_1 and F_2, F_3 , for which $g(F_0, F_1) = 0$, $g(F_2, F_3) = 1$. This contradicts Lemma 2. In case 1, one can take as $F_0(u)$ the uniform distribution in the interval $(a_{(2)} - \varepsilon_1, a_{(2)} + \varepsilon_1)$ and as $F_1(u)$ the uniform distribution in the interval $(a_{(1)} - \varepsilon_1, a_{(1)} + \varepsilon_1)$; then

$$g(F_0, F_1) = \iint_{-\infty}^{\infty} \left[F_0(f_2(u_1, u_2)) - F_0(f_1(u_1, u_2)) \right] dF_0(u_1) dF_1(u_1)$$

= $\frac{1}{4\varepsilon_1^2} \iint_K \left[F_0(f_2(u_1, u_2)) - F_0(f_1(u_1, u_2)) \right] du_1 du_2 = 0,$

since $f_1(u_1, u_2) \in (A - \varepsilon, A + \varepsilon)$, $f_2(u_1, u_2) \in (B - \varepsilon, B + \varepsilon)$ for any $(u_1, u_2) \in K$. Assuming now that $F_2(u) = F_1(u)$, $F_3(u) = F_0(u)$, we obtain

$$g(F_2, F_3) = \frac{1}{4\varepsilon_1^2} \iint_K \left[F_1(f_2(u_1, u_2)) - F_1(f_1(u_1, u_2)) \right] du_1 \, du_2 = 1,$$

since $F_1(f_1(u_1, u_2)) = 0$ for any $(u_1, u_2) \in K$, and $F_1(f_2(u_1, u_2)) = 1$.

In case 2, we select as $F_0(u)$ the uniform distribution in the interval $(a_{(1)} - \varepsilon_1, a_{(1)} + \varepsilon_1)$, and as $F_1(u)$ the uniform distribution in the interval $(a_{(2)} - \varepsilon_1, a_{(2)} + \varepsilon_1)$; moreover, $g(F_0, F_1) = 0$. Substituting now $F_1(u)$ for $F_2(u)$ and $F_0(u)$ for $F_3(u)$, we obtain $g(F_2, F_3) = 1$.

The subsequent reasoning will be based on the following lemma.

LEMMA 3. Let (x_1, x_2, x_3) be a sample from a general population with continuous distribution and $f_1(u_1, u_2)$, $f_2(u_1, u_2)$ continuous symmetric functions, forming

an invariant confidence interval $J = (f_1(x_1, x_2), f_2(x_1, x_2))$ for the class \mathcal{F}_C of all continuous distributions. If there exists a point $(a_1, a_2) \in \mathbf{R}^2$ such that the intervals $(A - \varepsilon, A + \varepsilon), (B - \varepsilon, B + \varepsilon), (a_{(1)} - \varepsilon_1, a_{(1)} + \varepsilon_1), (a_{(2)} - \varepsilon_1, a_{(2)} + \varepsilon_1)$ are mutually disjoint for some $\varepsilon, \varepsilon_1 > 0$, where $A = f_1(a_1, a_2), B = f_2(a_1, a_2), a_{(1)} = \min(a_1, a_2), a_{(2)} = \max(a_1, a_2)$, then $0 < A^* = \mathbf{P}(x_3 \in J) < 1$.

Proof. Denote by [a, b] the minimal segment containing all the intervals $(A - \varepsilon, A + \varepsilon)$, $(B - \varepsilon, B + \varepsilon)$, $(a_{(1)} - \varepsilon_1, a_{(1)} + \varepsilon_1)$, $(a_{(2)} - \varepsilon_1, a_{(2)} + \varepsilon_1)$. Consider the distribution F(u) with the following properties:

1. F(u) = 0 if $u \leq a$; F(u) = 1 if $u \geq b$.

2. The function F(u) is linear on the segments $[a_{(1)} - \varepsilon_1, a_{(1)} + \varepsilon_1], [a_{(2)} - \varepsilon_1, a_{(2)} + \varepsilon_1]$, and $F(a_{(1)} + \varepsilon_1) - F(a_{(1)} - \varepsilon_1) = F(a_{(2)} + \varepsilon_1) - F(a_{(2)} - \varepsilon_1) = \frac{1}{3}$.

3. The function F(u) takes on the constant value c_0 on the segment $[A - \varepsilon, A + \varepsilon]$ and the constant value c_1 on the segment $[B - \varepsilon, B + \varepsilon]$, where $\frac{1}{3} \leq c_1 - c_0 \leq \frac{2}{3}$.

4. To the other points of [a, b] the function F(u) is extended continuously (for example, linearly).

One may observe that such a distribution function exists for any arrangement of mutually disjoint intervals $(A - \varepsilon, A + \varepsilon)$, $(B - \varepsilon, B + \varepsilon)$, $(a_{(1)} - \varepsilon_1, a_{(1)} + \varepsilon_1)$, $(a_{(2)} - \varepsilon_1, a_{(2)} + \varepsilon_1)$ on the segment [a, b].

Let x_1, x_2, x_3 be a sample obtained by a simple sampling from the general population G with distribution F(u). Then

$$\begin{aligned} \mathbf{P} \Big\{ x_3 \in \big(f_1(x_1, x_2), f_2(x_1, x_2) \big) \Big\} \\ &= \mathbf{P} \Big\{ f_1(x_1, x_2) < x_3 < f_2(x_1, x_2), \ (x_1, x_2) \in K \Big\} \\ &+ \mathbf{P} \Big\{ f_1(x_1, x_2) < x_3 < f_2(x_1, x_2), \ (x_1, x_2) \in CK \Big\} \\ &\geq \mathbf{P} \Big\{ f_1(x_1, x_2) < x_3 < f_2(x_1, x_2), \ (x_1, x_2) \in K \Big\} \\ &+ \mathbf{P} \Big\{ A + \varepsilon < x_3 < B - \varepsilon, \ (x_1, x_2) \in K \Big\} \\ &= \mathbf{P} \Big\{ A + \varepsilon < x_3 < B - \varepsilon \Big\} \mathbf{P} \Big\{ (x_1, x_2) \in K \Big\} \ge 1/27, \end{aligned}$$

where $K = \{(x_1, x_2): a_{(1)} - \varepsilon_1 \leq x_1 \leq a_{(1)} + \varepsilon_1, a_{(2)} - \varepsilon_1 \leq x_2 \leq a_{(2)} + \varepsilon_1\}$ and CK is the complement of K. On the other hand,

$$\begin{aligned} \mathbf{P}\Big\{x_3 \in \big(f_1(x_1, x_2), f_2(x_1, x_2)\big)\Big\} \\ &= \mathbf{P}\big\{f_1(x_1, x_2) < x_3 < f_2(x_1, x_2), \ (x_1, x_2) \in K\big\} \\ &+ \mathbf{P}\big\{f_1(x_1, x_2) < x_3 < f_2(x_1, x_2), \ (x_1, x_2) \in CK\big\} \\ &\leq \mathbf{P}\big(A - \varepsilon < x_3 < B + \varepsilon\big)\mathbf{P}\big\{(x_1, x_2) \in K\big\} \\ &+ \mathbf{P}\big\{(x_1, x_2) \in CK\big\} \leq \frac{2}{27} + \frac{8}{9} = \frac{26}{27} < 1. \end{aligned}$$

The lemma is proved.

Let us now go over to the study of alternative 3. Consider the distribution $F_0(u)$, which is uniform in $(a_{(1)} - \varepsilon_1, a_{(1)} + \varepsilon_1)$, and the distribution $F_1(u)$, which is uniform in $(a_{(2)} - \varepsilon_1, a_{(2)} + \varepsilon_1)$. Then

$$\begin{split} \int_{a_{(1)}-\varepsilon_{1}}^{a_{(1)}+\varepsilon_{1}} \int_{a_{(2)}-\varepsilon_{1}}^{a_{(2)}+\varepsilon_{1}} \left[F_{0}(f_{2}(u_{1},u_{2})) - F_{0}(f_{1}(u_{1},u_{2})) \right] dF_{0}(u_{1}) dF_{1}(u_{1}) \\ &= \frac{1}{4\varepsilon_{1}^{2}} \int_{a_{(1)}-\varepsilon_{1}}^{a_{(1)}+\varepsilon_{1}} \int_{a_{(2)}-\varepsilon_{1}}^{a_{(2)}+\varepsilon_{1}} \left[F_{1}(f_{2}(u_{1},u_{2})) - F_{1}(f_{1}(u_{1},u_{2})) \right] du_{1} du_{2} = 0. \end{split}$$

This and equality (3) yield

(5)
$$J = \frac{1}{4\varepsilon_1^2} \int_{a_{(1)}-\varepsilon_1}^{a_{(1)}+\varepsilon_1} \int_{a_{(2)}-\varepsilon_1}^{a_{(2)}+\varepsilon_1} \left[F_1(f_2(u_1,u_2)) - F_1(f_1(u_1,u_2)) \right] du_1 \, du_2 = 3A^*.$$

By Lemma 3, the probability A^* lies in (0, 1) provided that $(f_1(x_1, x_2), f_2(x_1, x_2))$ is an invariant confidence interval; thus, the equalities $A^* = 0$ or $A^* = 1$ contradict the conditions of the theorem.

Denote $A_1 = f_1(a_{(1)}, a_{(1)}), B_1 = f_2(a_{(1)}, a_{(1)})$. If $A_1 = B_1$, then for the uniform distribution in the interval $(a_{(1)} - \varepsilon_1, a_{(1)} + \varepsilon_1)$ the probability A^* equals to zero. Assume $A_1 < B_1$. Suppose first that at least one of the inequalities $a_{(1)} \neq A_1, a_{(2)} \neq B_1$ holds. The following arrangements of $a_{(1)}, a_{(2)}, B_1, A_1$ are possible:

1. $A_1 < B_1 < a_{(2)}$; then

$$J = \int_{a_{(1)}-\varepsilon_1}^{a_{(1)}+\varepsilon_1} \int_{a_{(1)}-\varepsilon_1}^{a_{(1)}+\varepsilon_1} \left[F_1(f_2(u_1,u_2)) - F_1(f_1(u_1,u_2)) \right] dF_0(u_1) dF_0(u_2) = \frac{1}{4\varepsilon_1^2} \int_{a_{(1)}-\varepsilon_1}^{a_{(1)}+\varepsilon_1} \int_{a_{(1)}-\varepsilon_1}^{a_{(1)}+\varepsilon_1} \left[F_1(f_2(u_1,u_2)) - F_1(f_1(u_1,u_2)) \right] du_1 du_2 = 0,$$

since $F_1(f_2(u_1, u_2)) = 0$ and $F_1(f_1(u_1, u_2)) = 0$ if $(u_1, u_2) \in K_1 = \{(u_1, u_2): u_1 \in (a_{(1)} - \varepsilon_1, a_{(1)} + \varepsilon_1), u_2 \in (a_{(1)} - \varepsilon_1, a_{(1)} + \varepsilon_1)\}$. This and formula (5) yield $A^* = 0$.

2. $a_{(2)} < A_1 < B$; moreover, J = 0, since $F_1(f_2(u_1, u_2)) = 1$ and $F_1(f_1(u_1, u_2)) = 1$ if $(u_1, u_2) \in K_1$; thus, due to (5), $A^* = 0$.

3. $a_{(1)} < A_1 < a_{(2)} < B_1$ and $A_1 < a_{(1)} < a_{(2)} < B_1$. For these cases consider a sample (x_1, x_2, x_3) from the general population with distribution $F_0(u)$; then

$$\begin{split} A^* &= \mathbf{P} \Big\{ x_3 \in \big(f_1(x_1, x_2), \ f_2(x_1, x_2) \big) \Big\} \\ &= \iint_{K_1} \Big[F_0\big(f_2(u_1, u_2) \big) - F_0\big(f_1(u_1, u_2) \big) \Big] \, dF_0(u_1) \, dF_0(u_2) \\ &= \frac{1}{4\varepsilon_1^2} \iint_{K_1} \Big[F_0\big(f_2(u_1, u_2) \big) - F_0\big(f_1(u_1, u_2) \big) \Big] \, du_1 \, du_2 \\ &= \Big\{ \begin{matrix} 0 & \text{if} \quad a_{(1)} < A_1 < a_{(2)} < B_1, \\ 1 & \text{if} \quad A_1 < a_{(1)} < A_1. \end{matrix}$$

4. $A_1 \neq a_{(1)}, B_1 = a_{(2)}$. Under these conditions, a sample from a general population with distribution $F_0(u)$ satisfies

$$egin{aligned} A^* &= \mathbf{P}\Big\{x_3 \in ig(f_1(x_1,x_2),\ f_2(x_1,x_2)ig)\Big\} \ &= rac{1}{4arepsilon_1^2} \iint_{K_1} \Big[F_0ig(f_2(u_1,u_2)ig) - F_0ig(f_1(u_1,u_2)ig)\Big]\, du_1\, du_2 \ &= igg\{ egin{aligned} 0 & ext{if} & a_{(1)} < A_1, \ 1 & ext{if} & a_{(1)} > A_1. \end{aligned}$$

Assume now that $A_1 = a_{(1)}$, $B_1 = a_{(2)}$. Set $A_2 = f_1(a_{(2)}, a_{(2)})$ and $B_2 = f_2(a_{(2)}, a_{(2)})$. If $A_2 \neq a_{(2)}$ and $B_2 \neq a_{(2)}$, then a uniform distribution in the interval $(a_{(2)} - \varepsilon_1, a_{(2)} + \varepsilon_1)$ satisfies the equality

$$A^* = \mathbf{P}\Big\{x_3 \in \big(f_1(x_1, x_2), f_2(x_1, x_2)\big)\Big\} = \begin{cases} 0 & \text{if } a_{(2)} \notin (A_2, B_2), \\ 1 & \text{if } a_{(2)} \in (A_2, B_2). \end{cases}$$

Suppose now that $A_2 = a_{(2)}$, $B_2 = a_{(2)}$ or $A_2 \neq a_{(2)}$, $B_2 = a_{(2)}$, or else $A_2 = a_{(2)}$, $B_2 \neq a_{(2)}$. Let $\tilde{\mathbf{G}} = \{G_{\alpha}, \alpha \in [0, 1]\}$ be the class of general populations with distribution functions $F_{\alpha}(u)$, $(\alpha \in [0, 1])$ of the form

(6)
$$F_{\alpha}(u) = \begin{cases} \alpha \frac{u - (a_{(1)} - \varepsilon_1)}{2\varepsilon_1} & \text{if } a_{(1)} - \varepsilon_1 \leq u \leq a_{(1)} + \varepsilon_1, \\ (1 - \alpha) \frac{u - (a_{(2)} - \varepsilon_1)}{2\varepsilon_1} + \alpha & \text{if } a_{(2)} - \varepsilon_1 \leq u \leq a_{(2)} + \varepsilon_1, \\ 0 & \text{if } u < a_{(1)} - \varepsilon_1, \\ \alpha & \text{if } a_{(1)} - \varepsilon_1 < u < a_{(2)} - \varepsilon_1, \\ 1 & \text{if } u > a_{(2)} - \varepsilon_1. \end{cases}$$

Denote

$$\begin{split} K_2 &= \big\{ (u_1, u_2) \colon \, u_1 \in (a_{(2)} - \varepsilon_1, a_{(2)} + \varepsilon_1), \, \, u_2 \in (a_{(2)} - \varepsilon_1, a_{(2)} + \varepsilon_1) \big\}, \\ K_3 &= \big\{ (u_1, u_2) \colon \, u_1 \in (a_{(2)} - \varepsilon_1, a_{(2)} + \varepsilon_1), \, \, u_2 \in (a_{(1)} - \varepsilon_1, a_{(1)} + \varepsilon_1) \big\}; \end{split}$$

recall that

$$K = \{ (u_1, u_2): u_1 \in (a_{(1)} - \varepsilon_1, a_{(1)} + \varepsilon_1), u_2 \in (a_{(2)} - \varepsilon_1, a_{(2)} + \varepsilon_1) \}.$$

Let $x_1^{\alpha}, x_2^{\alpha}, x_3^{\alpha}$ be a sample from a general population with distribution $F_{\alpha}(\alpha \in [0, 1])$. Then the following equality holds:

$$\mathbf{P}\left\{x_{3}^{\alpha} \in \left(f_{1}(x_{1}^{\alpha}, x_{2}^{\alpha}), f_{2}(x_{1}^{\alpha}, x_{2}^{\alpha})\right)\right\} \\
= \mathbf{P}\left\{x_{3}^{\alpha} \in \left(f_{1}(x_{1}^{\alpha}, x_{2}^{\alpha}), f_{2}(x_{1}^{\alpha}, x_{2}^{\alpha})\right), (x_{1}^{\alpha}, x_{2}^{\alpha}) \in K_{1}\right\} \\
+ \mathbf{P}\left\{x_{3}^{\alpha} \in \left(f_{1}(x_{1}^{\alpha}, x_{2}^{\alpha}), f_{2}(x_{1}^{\alpha}, x_{2}^{\alpha})\right), (x_{1}^{\alpha}, x_{2}^{\alpha}) \in K_{2}\right\} \\
+ \mathbf{P}\left\{x_{3}^{\alpha} \in \left(f_{1}(x_{1}^{\alpha}, x_{2}^{\alpha}), f_{2}(x_{1}^{\alpha}, x_{2}^{\alpha})\right), (x_{1}^{\alpha}, x_{2}^{\alpha}) \in K_{3}\right\} \\
+ \mathbf{P}\left\{x_{3}^{\alpha} \in \left(f_{1}(x_{1}^{\alpha}, x_{2}^{\alpha}), f_{2}(x_{1}^{\alpha}, x_{2}^{\alpha})\right), (x_{1}^{\alpha}, x_{2}^{\alpha}) \in K\right\} \\
= \mathbf{P}\left\{x_{3}^{\alpha} \in \left(f_{1}(x_{1}^{\alpha}, x_{2}^{\alpha}), f_{2}(x_{1}^{\alpha}, x_{2}^{\alpha})\right), (x_{1}^{\alpha}, x_{2}^{\alpha}) \in K_{1}\right\} \\
+ \mathbf{P}\left\{x_{3}^{\alpha} \in \left(f_{1}(x_{1}^{\alpha}, x_{2}^{\alpha}), f_{2}(x_{1}^{\alpha}, x_{2}^{\alpha})\right), (x_{1}^{\alpha}, x_{2}^{\alpha}) \in K_{2}\right\}.$$

Furthermore,

(8)
$$\mathbf{P}\left\{x_{3}^{\alpha} \in \left(f_{1}(x_{1}^{\alpha}, x_{2}^{\alpha}), f_{2}(x_{1}^{\alpha}, x_{2}^{\alpha})\right), (x_{1}^{\alpha}, x_{2}^{\alpha}) \in K_{1}\right\}$$
$$= \iint_{K_{1}}\left[F_{\alpha}\left(f_{2}(u_{1}, u_{2})\right) - F_{\alpha}\left(f_{1}(u_{1}, u_{2})\right)\right] dF_{\alpha}(u_{1}) dF_{\alpha}(u_{2})$$
$$= \frac{\alpha^{2}}{4\varepsilon_{1}^{2}} \iint_{K_{1}}\left[F_{\alpha}\left(f_{2}(u_{1}, u_{2})\right) - F_{\alpha}\left(f_{1}(u_{1}, u_{2})\right)\right] du_{1} du_{2} = \alpha^{2}B_{1}^{*},$$

where

$$B_1^* = \frac{1}{4\varepsilon_1^2} \int_{a_{(1)}-\varepsilon_1}^{a_{(1)}+\varepsilon_1} \int_{a_{(1)}-\varepsilon_1}^{a_{(1)}+\varepsilon_1} \left[F_\alpha(f_2(u_1,u_2)) - F_\alpha(f_1(u_1,u_2)) \right] du_1 \, du_2.$$

Similarly,

(9)
$$\mathbf{P}\left\{x_{3}^{\alpha} \in \left(f_{1}(x_{1}^{\alpha}, x_{2}^{\alpha}), f_{2}(x_{1}^{\alpha}, x_{2}^{\alpha})\right), \ (x_{1}^{\alpha}, x_{2}^{\alpha}) \in K_{2}\right\}$$
$$= \frac{(1-\alpha)^{2}}{4\varepsilon_{1}^{2}} \iint_{K_{2}} \left[F_{\alpha}\left(f_{2}(u_{1}, u_{2})\right) - F_{\alpha}\left(f_{1}(u_{1}, u_{2})\right)\right] du_{1} du_{2} = (1-\alpha)^{2} B_{2}^{*},$$

where

$$B_2^* = \frac{1}{4\varepsilon_1^2} \int_{a_{(2)}-\varepsilon_1}^{a_{(2)}+\varepsilon_1} \int_{a_{(2)}-\varepsilon_1}^{a_{(2)}+\varepsilon_1} \left[F_\alpha(f_2(u_1,u_2)) - F_\alpha(f_1(u_1,u_2)) \right] du_1 \, du_2.$$

Using equalities (7), (8), and (9), we obtain

$$\begin{split} A^* &= \mathbf{P} \Big\{ x_3^{\alpha} \in \big(f_1(x_1^{\alpha}, x_2^{\alpha}), f_2(x_1^{\alpha}, x_2^{\alpha}) \big) \Big\} \\ &= \frac{\alpha^2}{4\varepsilon_1^2} \iint_{K_1} \Big[F_{\alpha} \big(f_2(u_1, u_2) \big) - F_{\alpha} \big(f_1(u_1, u_2) \big) \Big] \, du_1 \, du_2 \\ &+ \frac{(1-\alpha)^2}{4\varepsilon_1^2} \iint_{K_1} \Big[F_{\alpha} \big(f_2(u_1, u_2) \big) - F_{\alpha} \big(f_1(u_1, u_2) \big) \Big] \, du_1 \, du_2 \\ &= \alpha^2 B_1^* + (1-\alpha)^2 B_2^* = \varphi(\alpha), \end{split}$$

where $B_1^* > 0$, $B_2^* > 0$. It is obvious that the expression $\varphi(\alpha) = \alpha^2 B_1^* + (1 - \alpha)^2 B_2^*$ depends on α contradicting the conditions of the theorem. Thus, the theorem is proved for case 3. Its proof for cases 4, 5, and 6 is carried out analogously.

Let now $A = f_1(a_1, a_2) \neq a_{(1)} \neq a_{(2)}, B = f_2(a_1, a_2) = a_{(2)}$; then one can assume, without loss of generality, that in some neighbourhood $K = \{(u_1, u_2): u_1 \in (a_{(1)} - \varepsilon_1, a_{(1)} + \varepsilon_1), u_2 \in (a_{(2)} - \varepsilon_1, a_{(2)} + \varepsilon_1)\}$ of the point (a_1, a_2) the function $f_2(u_1, u_2)$ coincides with the fundamental symmetric function: $f_2(u_1, u_2) = u_2 \forall (u_1, u_2) \in K$. Choose $\varepsilon > 0$ and $\varepsilon_1 < \varepsilon$ in such a way that the intervals $(A - \varepsilon, A + \varepsilon), (a_{(1)} - \varepsilon_1, a_{(1)} + \varepsilon_1), (a_{(2)} - \varepsilon_1, a_{(2)} + \varepsilon_1)$ do not intersect and $A - \varepsilon \leq f_1(u_1, u_2) \leq A + \varepsilon, a_{(2)} - \varepsilon \leq f_2(u_1, u_2) \leq a_{(2)} + \varepsilon$ if $a_{(1)} - \varepsilon_1 \leq u_1 \leq a_{(1)} + \varepsilon_1, a_{(2)} - \varepsilon_1 \leq u_2 \leq a_{(2)} + \varepsilon_1$. It is easy to see that Lemma 3 remains correct if the intervals $(a_{(1)} - \varepsilon_1, a_{(1)} + \varepsilon_1) = u_1 \leq u_1 < u_1$

 (a_1) , $(A - \varepsilon, A + \varepsilon)$, $(a_{(2)} - \varepsilon_1, a_{(2)} + \varepsilon_1)$ are mutually disjoint; thus, in this case

(10)
$$0 < A^* < 1$$

Suppose first that there exists a point (a, a) lying on the diagonal such that

(11)
$$\bar{A}_1 = f_1(a, a) \neq a, \qquad \bar{B}_1 = f_2(a, a) \neq a.$$

Reducing if necessary the numbers ε , ε_1 , one can achieve it that the intervals $(\bar{A}_1 - \varepsilon, \bar{A}_1 + \varepsilon), (\bar{B}_1 - \varepsilon, \bar{B}_1 + \varepsilon)$ do not intersect $(a - \varepsilon_1, a + \varepsilon_1)$, and that $f_1(u_1, u_2) \in (\bar{A}_1 - \varepsilon, \bar{A}_1 + \varepsilon), f_2(u_1, u_2) \in (\bar{B}_1 - \varepsilon, \bar{B}_1 + \varepsilon)$ if $a - \varepsilon_1 \leq u_1 \leq a + \varepsilon_1, a - \varepsilon_1 \leq u_2 \leq a + \varepsilon_1$.

Consider the distribution F(u), which is uniform on the segment $[a - \varepsilon_1, a + \varepsilon_1]$; then the sample x_1, x_2, x_3 from the general population with distribution F(u) satisfies the equality

$$\begin{aligned} A^* &= \mathbf{P} \Big\{ x_3 \in \big(f_1(x_1, x_2), f_2(x_1, x_2) \big) \Big\} \\ &= \frac{1}{4\varepsilon_1^2} \int_{a-\varepsilon_1}^{a+\varepsilon_1} \int_{a-\varepsilon_1}^{a+\varepsilon_1} \Big[F\big(f_2(u_1, u_2) \big) - F\big(f_1(u_1, u_2) \big) \Big] \, du_1 \, du_2 \\ &= \Big\{ \begin{matrix} 0 & \text{if } \bar{A}_1 < a < \bar{B}_1, \\ 1 & \text{if } a \notin (\bar{A}_1, \bar{B}_1); \end{matrix} \end{aligned}$$

and that contradicts the inequality (10).

If the conditions (11) are not satisfied the two following alternatives occur: 1. $f_1(u, u) = u$, $f_2(u, u) = u \ \forall u \in \mathbf{R}^1$, 2. $f_2(u, u) \neq u$ at the points (u, u), where $f_1(u, u) = u$.

Consider first case 1. Choose $\varepsilon_1 > 0$ in such a way that all the previous relations in which ε_1 occurs are satisfied and, moreover, $f_1(u_1, u_2) \in (a_{(i)} - \varepsilon, a_{(i)} + \varepsilon)$, $f_2(u_1, u_2) \in (a_{(i)} - \varepsilon, a_{(i)} + \varepsilon)$ if $(u_1, u_2) \in \{(u_1, u_2): u_1 \in (a_{(i)} - \varepsilon_1, a_{(i)} + \varepsilon_1), u_2 \in (a_{(i)} - \varepsilon_1, a_{(i)} + \varepsilon_1)\}$ (i = 1, 2). Let $F_1(u)$ be a uniform distribution on the interval $(a_{(2)} - \varepsilon_1, a_{(2)} + \varepsilon_1)$ and $F_2(u)$ on the interval $(a_{(1)} - \varepsilon_1, a_{(1)} + \varepsilon_1)$. Then, by formula (2),

$$\begin{split} 3A^* &= 2 \iint_{-\infty}^{\infty} \left[F_1(f_2(u_1, u_2)) - F_1(f_1(u_1, u_2)) \right] dF_1(u_1) dF_2(u_2) \\ &+ \iint_{-\infty}^{\infty} \left[F_2(f_2(u_1, u_2)) - F_2(f_1(u_1, u_2)) \right] dF_1(u_1) dF_1(u_2) \\ &= \frac{2}{4\varepsilon_1^2} \int_{a_{(1)} - \varepsilon_1}^{a_{(1)} + \varepsilon_1} \int_{a_{(2)} - \varepsilon_1}^{a_{(2)} + \varepsilon_1} F_1(f_2(u_1, u_2)) du_1 du_2 \\ &+ \frac{1}{4\varepsilon_1^2} \int_{a_{(2)} - \varepsilon_1}^{a_{(2)} + \varepsilon_1} \int_{a_{(2)} - \varepsilon_1}^{a_{(2)} + \varepsilon_1} \left[F_2(f_2(u_1, u_2)) - F_2(f_1(u_1, u_2)) \right] du_1 du_2 \\ &= \frac{2}{4\varepsilon_1^2} \int_{a_{(1)} - \varepsilon_1}^{a_{(1)} + \varepsilon_1} \left[\int_{a_{(2)} - \varepsilon_1}^{a_{(2)} + \varepsilon_1} \frac{u_2 - (a_{(2)} - \varepsilon_1)}{2\varepsilon_1} du_2 \right] du_1 = 1; \end{split}$$

thus,

$$A^* = \frac{1}{3}$$

Let now $F_i(u)$ be a uniform distribution in the interval $(a_{(i)} - \varepsilon_1, a_{(i)} + \varepsilon_1)$ (i = 1, 2). Using formula (2) as in the previous case, we obtain

$$\begin{split} 3A^* &= \frac{2}{4\varepsilon_1^2} \int_{a_{(1)}-\varepsilon_1}^{a_{(1)}+\varepsilon_1} \int_{a_{(2)}-\varepsilon_1}^{a_{(2)}+\varepsilon_1} \left[F_1(f_2(u_1,u_2)) - F_1(f_1(u_1,u_2)) \right] du_1 \, du_2 \\ &\quad + \frac{1}{4\varepsilon_1^2} \int_{a_{(1)}-\varepsilon_1}^{a_{(1)}+\varepsilon_1} \int_{a_{(1)}-\varepsilon_1}^{a_{(1)}+\varepsilon_1} \left[F_2(f_2(u_1,u_2)) - F_2(f_1(u_1,u_2)) \right] du_1 \, du_2 \\ &= \frac{2}{4\varepsilon_1^2} \int_{a_{(1)}-\varepsilon_1}^{a_{(1)}+\varepsilon_1} \int_{a_{(2)}-\varepsilon_1}^{a_{(2)}+\varepsilon_1} \left[1 - F_1(f_1(u_1,u_2)) \right] du_1 \, du_2 = \begin{cases} 0 & \text{if } A > a_{(1)}, \\ 2 & \text{if } A < a_{(1)}. \end{cases} \end{split}$$

Hence, $A^* = 0$ if $A > a_{(1)}$, and $A^* = \frac{2}{3}$ if $A < a_{(1)}$, which contradicts the equality (12).

We pass now to the study of case 2. Condition 2 implies that one of the following relations holds at the point $(a_{(2)}, a_{(2)})$:

(a)
$$f_1(a_{(2)}, a_{(2)}) = a_{(2)}, f_2(a_{(2)}, a_{(2)}) > a_{(2)},$$

(b) $f_2(a_{(2)}, a_{(2)}) = a_{(2)}, f_1(a_{(2)}, a_{(2)}) < a_{(2)}.$

Since conditions (4) do not hold in this case, the function $f_1(u_1, u_2)$ is equal to $u_{(2)}$ in the points where $f_1(u_1, u_2) \neq u_{(1)}$, $f_1(u_1, u_2) \neq u_{(2)}$. Consider case (a). We have $f_1(a_{(2)}, a_{(2)}) \neq a_{(2)}$, $f_2(a_{(2)}, a_{(2)}) = a_{(2)}$, where the last equality may be assumed to hold in some neighbourhood $K_2 = \{(u_1, u_2): a_{(2)} - \varepsilon_1 \leq u_1 \leq a_{(2)} + \varepsilon_1, a_{(2)} - \varepsilon_1 \leq u_2 \leq a_{(2)} + \varepsilon_1\}$ of the point $(a_{(2)}, a_{(2)})$. Let $\mathbf{G}_{[a_{(2)}-\varepsilon_1, a_{(2)}+\varepsilon_1]}$ be the class of general populations with continuous distribution functions which are concentrated on the

segment $[a_{(2)} - \varepsilon_1, a_{(2)} + \varepsilon_1]$. It is clear that, for this class of distributions,

$$A^* = \mathbf{P} \{ x_3 < f_2(x_1, x_2) \} - \mathbf{P} \{ x_3 < f_1(x_1, x_2) \}$$

= $\int_{a_{(2)}-\varepsilon_1}^{a_{(2)}+\varepsilon_1} \int_{a_{(2)}-\varepsilon_1}^{a_{(2)}+\varepsilon_1} F(f_2(u_1, u_2)) dF(u_1) dF(u_2)$
- $\int_{a_{(2)}-\varepsilon_1}^{a_{(2)}+\varepsilon_1} \int_{a_{(2)}-\varepsilon_1}^{a_{(2)}+\varepsilon_1} F(f_1(u_1, u_2)) dF(u_1) dF(u_2),$

where the first integral, as it was shown in [3], does not depend on the distribution F(u) of the general population $G \in \mathbf{G}_{[a_{(2)}-\varepsilon_1,a_{(2)}+\varepsilon_1]}$, while the second one varies depending on F. Hence, we arrive at a contradiction, since $(f_1(x_1,x_2), f_2(x_1,x_2))$ is an invariant confidence interval.

Case (b) is analyzed similarly.

For an arbitrary natural number n > 2 the proof of the theorem is carried out using the procedure introduced above by analyzing various arrangements of the points $A, B, a_{(1)}, \dots, a_{(n)}$ which are analogous to alternatives 1–6. For example, consider one of the most general cases, when there exists a point $(a, a, \dots, a) \in \mathbb{R}^n$ such that

(13)
$$D_1 = f_1(a, a, \dots, a) \neq a,$$
$$D_2 = f_2(a, a, \dots, a) \neq a.$$

Then, for $D_1 \neq D_2$ one can choose an $\varepsilon > 0$, for which the intervals $(a - \varepsilon, a + \varepsilon)$, $(D_1 - \varepsilon, D_1 + \varepsilon), (D_2 - \varepsilon, D_2 + \varepsilon)$ do not intersect (or, if $D_1 = D_2 = D$, the intervals $(a - \varepsilon, a + \varepsilon), (D - \varepsilon, D + \varepsilon)$ do not intersect). Since the functions $f_1(u_1, u_2, \dots, u_n)$, $f_2(u_1, u_2, \dots, u_n)$ are continuous according to the conditions of the theorem, there exists, for any $\varepsilon > 0$, an $\varepsilon_1 \in (0, \varepsilon)$ such that

(14)
$$D_1 - \varepsilon \leq f_1(u_1, u_2, \cdots, u_n) \leq D_1 + \varepsilon, D_2 - \varepsilon \leq f_2(u_1, u_2, \cdots, u_n) \leq D_2 + \varepsilon,$$

for all $(u_1, u_2, \dots, u_n) \in \Pi = \{(u_1, u_2, \dots, u_n): a - \varepsilon_1 \leq u_1 \leq a + \varepsilon_1, \dots, a - \varepsilon_1 \leq u_n \leq a + \varepsilon_1\}.$

Consider a distribution $F_a(u)$ which is uniform on the segment $[a - \varepsilon_1, a + \varepsilon_1]$. Let x_1, x_2, \dots, x_n, x be a sample from the general population with distribution function $F_a(u)$; then conditions (13), (14), and the definition of $F_a(u)$ imply that

$$\begin{aligned} \mathbf{P} \Big\{ x \in \big(f_1(x_1, \cdots, x_n), f_2(x_1, \cdots, x_n) \big) \Big\} \\ &= \frac{1}{(2\varepsilon_1)^n} \int_{a-\varepsilon_1}^{a+\varepsilon_1} \cdots \int_{a-\varepsilon_1}^{a+\varepsilon_1} \Big[F_a\big(f_2(u_1, \cdots, u_n) \big) - F_a\big(f_1(u_1, \cdots, u_n) \big) \Big] \, du_1 \cdots du_n \\ &= \begin{cases} 0 & \text{if } D_1 < a, \ D_2 < a \ \text{or } D_1 > a, \ D_2 > a \ (D < a), \\ 1 & \text{if } D_1 < a, \ D_2 > a \ (D > a), \end{cases} \end{aligned}$$

since either $F_a(f_2(u_1, \dots, u_n)) - F_a(f_1(u_1, \dots, u_n)) = 0$ or $F_a(f_2(u_1, \dots, u_n)) - F_a(f_1(u_1, \dots, u_n)) = 1$, depending on the arrangements of the points D_1 and D_2 (D) for $(u_1, u_2, \dots, u_n) \in \Pi$, contradicting Lemma 3.

The theorem is proved.

Note. A result analogous to Theorem 1 has been obtained by Robbins for nonparametrical tolerance intervals ([4], § 2.6); however, these theorems are only slightly related and do not imply each other. Moreover, the proof of Robbins' theorem is much simpler than that of Theorem 1.

Let $\mathbf{G} = \{G_{\alpha}, \alpha \in \mathfrak{A}\}$ be an arbitrary class of general populations, $\{J_t(x_1, x_2, \dots, x_n), t \in T\}$, $(n \in N)$ the set of all invariant confidence intervals for the class \mathbf{G} and $\mathfrak{B}(\mathbf{G}) = \{\beta_{t,n} = \mathbf{P}\{x^{\alpha} \in J_t(x_1, \dots, x_n), t \in T, x^{\alpha} \in G_{\alpha}\}\}$ the set of all confidence levels, corresponding to the confidence intervals $J_t(x_1, x_2, \dots, x_n)$. Theorem 1 and the equality

$$\mathbf{P}ig(x \in (x_{(i)}, x_{(j)})ig) = rac{j-i}{n+1} \qquad ig(i < j, \ i, j \in \{1, 2, \cdots, n\}ig)$$

immediately yield the following corollary.

COROLLARY. The totality $\mathfrak{B}(\mathbf{G}_C)$ of all confidence levels corresponding to all possible invariant confidence intervals, satisfying the conditions of Theorem 1 for the class \mathbf{G}_C of general populations with continuous distribution functions is the set of all rationals from the interval $[0,1]:\mathfrak{B}(\mathbf{G}_C) = [0,1] \cap \mathbf{Q}$.

THEOREM 2. Let (x_1, x_2, \dots, x_n) be a sample from the general population G with continuous distribution, obtained by means of simple sampling, let $J = (f_1(x_1, \dots, x_n), f_2(x_1, \dots, x_n))$ be an invariant confidence interval constructed from the sample values x_1, \dots, x_n , satisfying the conditions of Theorem 1, and let $x_{n+1}, x_{n+2}, \dots, x_{n+m}$ be subsequent sample values from the general population G. Then,

$$\mathbf{P}(x_{n+1}, \cdots, x_{n+m} \in J) = \frac{n!(m+s-r-1)!}{(s-r-1)!(m+n)!}$$

where $r < s; r, s \in \{1, 2, \dots, n\}$.

Proof. Indeed, by virtue of Theorem 1, the invariant confidence interval J for the class of continuous distributions has the form $J = (x_{(t)}, x_{(s)})$, where r < s; $r, s \in \{1, 2, \dots, n\}$. Furthermore, the joint density function of the uniform order statistics $\tilde{x}_{(r)}$ and $\tilde{x}_{(s)}$ is determined by the formula

$$f_{r,s}(u,v) = \frac{n!}{(r-1)!(s-r-1)!(n-s)!} u^{r-1}(v-u)^{s-r-1}(1-v)^{n-s}$$

 $(0 \leq u < v \leq 1)$; thus, the following equality holds:

$$\int_0^1 \int_u^1 u^{r-1} (v-u)^{s-r-1} (1-v)^{n-s} \, dv \, du = (r-1)! (s-r-1)! (n-s)! / n!.$$

Taking Smirnov's transformation into account, we obtain

$$\begin{split} \mathbf{P}(x_{n+1}, \cdots, x_{n+m} \in J) \\ &= \mathbf{P}\big(x_{n+1} \in (x_{(r)}, x_{(s)}), \cdots, x_{n+m} \in (x_{(r)}, x_{(s)})\big) \\ &= \mathbf{P}\big(\tilde{x}_{n+1} \in (\tilde{x}_{(r)}, \tilde{x}_{(s)}), \cdots, \tilde{x}_{n+m} \in (\tilde{x}_{(r)}, \tilde{x}_{(s)})\big) \\ &= \frac{n!}{(r-1)!(s-r-1)!(n-s)!} \int_{0}^{1} \int_{u}^{1} (v-u)^{m} f_{r,s}(u,v) \, dv \, du \\ &= \frac{n!}{(r-1)!(s-r-1)!(n-s)!} \int_{0}^{1} \int_{u}^{1} u^{r-1} (v-u)^{s+m-r-1} (1-v)^{n-s} \, dv \, du \\ &= \frac{n!}{(r-1)!(s-r-1)!(n-s)!} \frac{(r-1)!(s+m-r-1)!(n-s)!}{(m+n)!} \\ &= \frac{n!(s+m-r-1)!}{(n+m)!(s-r-1)!} \,. \end{split}$$

The theorem is proved. COROLLARY. Under the conditions of Theorem 2, the equality

$$\mathbf{P}(x_{n+1}, x_{n+2}, \cdots, x_{n+m}, \cdots \in J) = 0$$

holds.

REFERENCES

- I. MADREIMOV AND YU. I. PETUNIN, Characterization of an uniform distribution with the help of order statistics, Theory Prob. and Math. Statist., 27 (1982), pp. 96–102. (In Russian.)
- [2] B. L. VAN DER WAERDEN, Matematische Statistik, Springer-Verlag, Berlin-Goettingen-Heidelberg, 1957.
- [3] I. G. BAIRAMOV AND YU. I. PETUNIN, Invariant confidence intervals for the bulk of the distribution, Vychislit. Prikl. Mat., 65 (1988), pp. 112–117. (In Russian.)
- [4] H. A. DAVID, Order Statistics, John Wiley, London-New York, 1970.