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A NOTE ON THE RESIDUAL LIFETIMES IN A LIFE-TEST UNDER
PROGRESSIVE TYPE-II RIGHT CENSORING SCHEME
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Abstract. Suppose that n independent and identically distributed items have been placed
in a life-test with Progressive Type-II censoring scheme (R1, R2, ..., Rm). In this paper, we
investigate some characterizations and ordering results based on the residual lifetimes of the
remaining items following the kth failure in the test.
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1. Introduction

In reliability analysis, the classical theory of (n− k + 1)-out-of-n systems assumes that the n
lifetimes X1, X2, ..., Xn of components of the system are independent and identically distributed
(i.i.d.) random variables, with common absolutely continuous cumulative distribution function
(cdf) F , and corresponding probability density function (pdf) f. Let X1:n, X2:n, ..., Xn:n be
corresponding order statistics showing the failure times in the system. Recently, in [5] the
authors have studied the joint distribution of residual life lengths of the remaining components
after rth failure (1 ≤ r ≤ k) in an (n − k + 1)-out-of-n system. After an (n − k + 1)-out-of-n
system fails, viz., after the kth failure has been observed in the system, it is reasonable to break
down the system and rescue the unfailed components for possible future use in other systems.
In [5] it is shown that the residual life lengths X

(k)
1 , X

(k)
2 , ..., X

(k)
n−k of the remaining components

after the kth failure in the system are exchangeable random variables with the joint survival
function

F̄ (k)
n (x1, x2, ..., xn−k) =

∞∫

−∞




n−k∏

j=1

F̄ (xj + t)
F̄ (t)


 dFk:n(t),

where F̄ = 1− F is the survival function, and Fk:n(t) = P{Xk:n ≤ t}.
In this paper, we investigate residual life lengths of the remaining items after the kth failure

under Progressive Type-II right censoring scheme, which is widely used in reliability and life-
testing. Some early works on progressive censoring was done in [8, 14, 24]. The Progressive
Type-II right censored order statistics arouses the interest of many researchers, and the number
of published papers has increased in the last few years. Some of the recently published papers
are [1, 2, 4, 6, 17, 19, 20, 25 ] among many others. This subject continues to arouse the interest
of many researchers, and the number of published papers in statistical literature has increased
in the last few years. We also refer [9, 11, 13, 23] as the comprehensive sources in reliability
theory, risk analysis, and performance analysis of networks.

1Department of Statistics, University of Isfahan, Isfahan, Iran
e-mail: mahdi.tavangar@gmail.com

2Department of Mathematics, Izmir University of Economics, Izmir, Turkey
e-mail: ismihan.bayramoglu@ieu.edu.tr
Manuscript received 23 February 2010.

368



M. TAVANGAR, I. BAIRAMOV: A NOTE ON THE RESIDUAL LIFE TIMES ... 369

Suppose n items are placed on life-test with the corresponding failure times X1, X2, ..., Xn.
Assume that the prefixed number of failures to be observed is m and the Progressive Type-II
censoring scheme is given by the vector R̃ = (R1, R2, ..., Rm) with R1 + R2 + · · ·+ Rm + m = n.

The first failure comes at time X1:n = min(X1, X2, ..., Xn) = XR̃
1:m:n. After the first failure,

R1 units are randomly selected and removed from the experiment. Then observing the second
failure time XR̃

2:m:n, the R2 units are randomly selected and removed from the experiment, etc.
After mth failure, all remaining items are removed and the experiment is terminated. The failure
times XR̃

1:m:n, XR̃
2:m:n, ..., XR̃

m:m:n are called the Progressive Type-II right censored order statistics
(pcos). For simplicity of notations, we use in this paper Xi:m:n instead of XR̃

i:m:n, i = 1, 2, ..., m.
Assuming that X1, X2, ..., Xn have a common absolutely continuous cdf F with pdf f , the joint
pdf of the first k progressively Type-II right censored order statistics is given by, k = 1, 2, ..., m,

fX1:m:n,...,Xk:m:n
(x1, ..., xk) = ck−1




k−1∏

j=1

f(xj){F̄ (xj)}Rj


 f(xk){F̄ (xk)}γk−1, (1)

0 ≤ x1 < x2 < · · · < xk,

where ck−1 =
k∏

j=1
γj with γj =

m∑
v=j

(Rv + 1), j = 1, 2, ...,m. Note that γ1 =
m∑

v=1
(Rv + 1) = n.

Here γj is, in fact, the number of alive items just before the pth pcos. The marginal cdf of the
kth pcos can be expressed as

F
XR̃

k:m:n
(x) = 1− ck−1

k∑

i=1

ai(k)
γi

{F̄ (x)}γi , x ≥ 0,

where ai(k) =
k∏

j=1

j 6=i

1
γj−γi

, i = 1, 2, ..., k, and the empty product
∏
∅ is defined to be 1. We refer the

reader to [7] and the references therein for a comprehensive discussion and inferential procedures
based on progressive censoring.

Throughout the paper, for any random variable W , FW denotes the distribution function of
W .

2. The residual lifetimes of the remaining items

Let X1, X2, ..., Xn be lifetimes of n items put under Progressive Type-II right censoring
scheme (R1, R2, ..., Rm). We assume that X1, X2, ..., Xn are i.i.d. with absolutely continuous cdf
F and pdf f. Suppose that at time Xk:m:n = x, the experiment is terminated. Then it is obvious
that the residual lifetimes of the remaining items in the test at time x is free of Rk+1, . . . , Rm.
Thus, without loss of generality, we can assume that Rk+1 = · · · = Rm = 0, and consider another
experiment with censoring scheme S̃ = (R1, R2, . . . , Rk, 0, 0, . . . , 0). Note that the lifetimes of
the remaining items in the original experiment are distributed as the randomly ordered values
of X S̃

k+1:k+p:n, . . . , X S̃
k+p:k+p:n, where p = γk+1. Also note that XR̃

k:m:n = X S̃
k:k+p:n. Upon using

the Markov property of pcos, we have

f
XS̃

k+1:k+p:n,...,XS̃
k+p:k+p:n|XS̃

k:k+p:n
(xk+1, . . . , xk+p|x) = c

k+p∏

j=k+1

f(xj)
F̄ (x)

, x < xk+1 < · · · < xk+p,

where c is the normalizing constant. Therefore, given X S̃
k:k+p:n = x, X S̃

k+1:k+p:n, . . . , X S̃
k+p:k+p:n

are distributed as the order statistics from an i.i.d. sample of size p with survival function

F̄ (y)/F̄ (x), t > x, where p = p(k) = γk+1 =
m∑

v=k+1

(Rv +1) = Rk+1 +Rk+2 + · · ·+Rm +(m− k)
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is the number of survived items after k failures. If we denote by Z
(k)
i , i = 1, 2, . . . , p, the

randomly ordered values of X S̃
k+1:k+p:n, . . . , X S̃

k+p:k+p:n, then given X S̃
k:k+p:n = x, these Z

(k)
i ’s

will be i.i.d. with survival function F̄ (y)/F̄ (x), y > x. It follows that given Xk:m:n = x, the
Z

(k)
i ’s are i.i.d. with common survival function H̄x(y) = F̄ (y)/F̄ (x), y > x. The residual

lifetimes X
(k)
1 , X

(k)
2 , ..., X

(k)
p of the remaining p items after k failures may be then defined as

X
(k)
i = Z

(k)
i −Xk:m:n, i = 1, 2, ..., p.

Let FXk:m:n
(t) denote the cdf of Xk:m:n. The joint survival function of the residual lifetimes

of the remaining items can be obtained as

F̄ (k)
p (x1, x2, ..., xp) = P{X(k)

1 > x1, X
(k)
2 > x2, ..., X

(k)
p > xp} =

=

∞∫

0

P{X(k)
1 > x1, ..., X

(k)
p > xp | Xk:m:n = t}dFXk:m:n

(t) =

=

∞∫

0

P{Z(k)
1 > x1 + t, ..., Z(k)

p > xp + t | Xk:m:n = t}dFXk:m:n
(t) =

=

∞∫

0




p∏

j=1

F̄ (xj + t)
F̄ (t)


 dFXk:m:n

(t). (2)

It is clear from (2) that the X
(k)
i ’s have exchangeable distribution. The joint density of

X
(k)
1 , X

(k)
2 , ..., X

(k)
p can be written as

f (k)
p (x1, x2, ..., xp) =

∞∫

0




p∏

j=1

f(xj + t)
F̄ (t)


 fXk:m:n

(t)dt, (3)

and the marginal survival function of X
(k)
i can be expressed as

P{X(k)
i > x} =

∞∫

0

F̄ (x + t)
F̄ (t)

fXk:m:n
(t)dt.

Remark 1. The residual lifetimes X
(k)
i of the remaining items after kth failure in Progressive

Type-II censored experiment is closely related to the concept of the mean residual life (MRL)
function. Let X be the life length of an item with absolutely continuous survival function F̄ (x).
The MRL function is defined as ψF (t) = E(X − t | X > t). It is not difficult to prove that

E(X(k)
1 ) = E(ψF (Xk:m:n))

and

cov

(
X

(k)
1

ψF (Xk:m:n)
, ψF (Xk:m:n)

)
= 0.

3. Characterizations

Let X be a lifetime (nonnegative) random variable with cdf F and survival function F̄ = 1−F .
The random variable X is said to have the generalized Pareto distribution (GPD) with parameter
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vector (c, .) (which will be denoted by GPD(c, .)), where c ∈ R, if 1+ cX > 0 almost surely and
X∗, where

X∗ =





1
c log(1 + cX), if c 6= 0;

X, if c = 0,

is exponential. This family of distributions contains three distributions; for c = 0, the distri-
bution is exponential, for c > 0, it is Pareto with linearly decreasing (increasing) failure rate
(mean residual life), and for c < 0, it is a re-scaled beta model which has a linearly increasing
(decreasing) failure rate (mean residual life). Note that for c < 0, the distribution is bounded
above. Applications of the GPD have been extensively investigated in the literature. It is
successfully applied and widely used in a number of statistical problems related to finance,
insurance, hydrological frequency analysis, and other areas.

In this section, we prove some characterization results on the GPD based on the residual
lifetimes of the remaining items in a life-test.

Theorem 1. Let F be an absolutely continuous cdf and c be a real number such that
cX1 + 1 > 0 almost surely. If

X
(k)
1

cXk:m:n + 1
d= X1, (4)

then F is GPD(c, .).
Proof. One can check that the condition (4) simply yields

∞∫

0

F̄ (x(1 + ct) + t)
F̄ (t)

fXk:m:n
(t)dt = F̄ (x),

for every x ≥ 0. We can write this equation as

∞∫

0

F̄ (x(1 + ct) + t)µ(dt) = F̄ (x), (5)

with the measure µ defined as µ(t) = fXk:m:n
(t)/F̄ (t). In the case where c = 0, this is an

integrated Cauchy functional equation (see, for example, [18]), and hence F is GPD(0, .). When
c 6= 0, it follows from Theorem 2 in [3] that F is GPD(c, .). This completes the proof of the
theorem.

Theorem 2. Let F be an absolutely continuous cdf which is strictly increasing on [0, ω(F ))
where ω(F ) denotes the right extremity of support of F . Assume that θ(t) is a continuous
function which is positive on [0, ω(F )) and θ(0) = 1. If

(a): X
(k)
1

θ(Xk:m:n) and X
(k)
2

θ(Xk:m:n) are independent, or if

(b): X
(k)
1

θ(Xk:m:n) and Xk:m:n are independent, and for each x > 0, F̄ (xθ(t) + t)/F̄ (t) is a
monotone function of t,

then F is GPD(c, .), for some c ∈ R.
Proof. Let assumption (a) hold. For any x1, x2 > 0, we can obtain the joint survival function

P

{
X

(k)
1

θ(Xk:m:n)
> x1,

X
(k)
2

θ(Xk:m:n)
> x2

}
=

∞∫

0




2∏

j=1

F̄ (xjθ(t) + t)
F̄ (t)


 dFXk:m:n

(t).
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The independence assumption implies that
∞∫

0




2∏

j=1

F̄ (xjθ(t) + t)
F̄ (t)


 dFXk:m:n

(t) =

∞∫

0

F̄ (x1θ(t) + t)
F̄ (t)

dFXk:m:n
(t)×

×
∞∫

0

F̄ (x2θ(t) + t)
F̄ (t)

dFXk:m:n
(t),

or equivalently

cov
(

F̄ (x1θ(Xk:m:n) + Xk:m:n)
F̄ (Xk:m:n)

,
F̄ (x2θ(Xk:m:n) + Xk:m:n)

F̄ (Xk:m:n)

)
= 0.

Since x1, x2 are arbitrary, we get, for each x > 0, that

var
(

F̄ (xθ(Xk:m:n) + Xk:m:n)
F̄ (Xk:m:n)

)
= 0.

This implies that for each x, F̄ (xθ(Xk:m:n)+Xk:m:n)/F̄ (Xk:m:n) is degenerate. Hence, we obtain
the ratio F̄ (xθ(y)+y)/F̄ (y) to be independent of y for each y ∈ (0, ω(F )) and x ∈ R+, say φ(x).
By considering the limits as y → 0+, and using the right continuity of F̄ (y) and the continuity
of θ(y), we can conclude that φ(x) = F̄ (x). Now the desired result follows from [16] ; that is, F
is GPD(c, .) for some c ∈ R. This proves the result when the assumption (a) holds.

Now let the condition (b) hold. After some manipulations, we can write the joint survival
function of

X
(k)
1

θ(Xk:m:n)
,

X
(k)
2

θ(Xk:m:n)
, ...,

X
(k)
p

θ(Xk:m:n)
, Xk:m:n

as follows,

P

{
X

(k)
1

θ(Xk:m:n)
> x1,

X
(k)
2

θ(Xk:m:n)
> x2, ...,

X
(k)
p

θ(Xk:m:n)
> xp, Xk:m:n > y

}
=

=

∞∫

y




p∏

j=1

F̄ (xjθ(t) + t)
F̄ (t)


 dFXk:m:n

(t),

and therefore we have

P

{
X

(k)
1

θ(Xk:m:n)
> x,Xk:m:n > y

}
=

∞∫

y

F̄ (xθ(t) + t)
F̄ (t)

dFXk:m:n
(t), x, y ≥ 0. (6)

Thus, by the independence assumption, we get
∞∫

y

F̄ (xθ(t) + t)
F̄ (t)

dFXk:m:n
(t) =

∞∫

0

F̄ (xθ(t) + t)
F̄ (t)

dFXk:m:n
(t)

∞∫

y

dFXk:m:n
(t),

which can be written as

cov
(

I{y≤Xk:m:n<∞},
F̄ (xθ(Xk:m:n) + Xk:m:n)

F̄ (Xk:m:n)

)
= 0,

for any y ∈ (0, ω(F )). Using Tchebychev’s second inequality (see [5]) we conclude that for each
x > 0, F̄ (xθ(Xk:m:n) + Xk:m:n) is degenerate. This means that F is GPD(c, 0) for some c ∈ R.
The proof is complete.
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Theorem 3. Let F be an absolutely continuous cdf, and c be a real number such that
cX1 + 1 > 0 almost surely. Then

E

{
φ

(
X

(k)
1

cXk:m:n + 1

)
Xk:m:n = x

}
= α, x ≥ 0, (7)

for some nonnegative and strictly increasing function φ(x), if and only if F is GPD(c, .), where
α is a positive constant.

Proof. From (6), it follows that for each x, t > 0,

P

{
X

(k)
1

cXk:m:n + 1
> t Xk:m:n = x

}
=

F̄ (x + (1 + cx)t)
F̄ (x)

.

Let equality in (7) hold. Then we can conclude that
∞∫

0

F̄ (x + (1 + cx)t)dφ(t) = αF̄ (x),

which is the same integral equation in (5) with µ = φ/α. As we see in the proof of Theorem 1,
the only solution is the survival function of GPD(c, .).

4. Ordering results

Recall that F is said to be new better than used (NBU) if for every t, x ≥ 0, we have
F̄ (x + t) ≤ F̄ (x)F̄ (t), and F is said to be new worse than used (NWU) if for every t, x ≥ 0,
we have F̄ (x + t) ≥ F̄ (x)F̄ (t). The following theorem describes the properties of NBU and
NWU based on stochastic comparisons between X

(k)
1 and X1. The proof is simple and hence is

omitted.
Theorem 4. If F is NBU (NWU), then X

(k)
1 ≤st X1 (X1 ≤st X

(k)
1 ).

In the following theorems, we provide same stochastic orderings of the residual lifetimes of
the remaining items in a life-test. For two random variables X and Y , with respective density
functions f , and g, and survival functions F̄ and Ḡ, X is said to be smaller than Y in likelihood
ratio order (denoted by X ≤lr Y ) if g(x)/f(x) is increasing in x, and, X is said to be smaller
than Y in hazard rate order (denoted by X ≤hr Y ) if Ḡ(x)/F̄ (x) is increasing in x. For a
comprehensive discussion on various concepts of stochastic ordering, we refer the reader to [21].
We recall that a function h(x, y) is said to be totally positive of order 2 (TP2) if h(x, y) ≥ 0 and

h(x1, y1)h(x2, y2)− h(x1, y2)h(x2, y1) ≥ 0,

whenever x1 < x2 and y1 < y2. If the above inequality is reversed, then h(x, y) is said to be
reverse regular of order 2 (RR2). For more details on TP2 and RR2 functions, see [10]. First
note that, using (1), the density function of Xk:m:n can be written as

fXk:m:n
(x) = ck−1f(x){F̄ (x)}γk−1ξk(F (x)),

where ξ1 ≡ 1, ξk(F (x)) =
∫
A

k−1∏
j=1

(1− uj)Rjduj , k = 2, 3, ..., m, and A = {(u1, ..., uk−1) : 0 < u1 <

u2 < · · · < uk−1 < F (x)}.
Theorem 5. Let X1, X2, ..., Xn be i.i.d. nonnegative random variables with distribution F

and density f and given Xk:m:n = x, denote by X
(k)
i , i = 1, 2, ..., p, the residual lifetimes of

the remaining items. Also let Y1, Y2, ..., Yn be other i.i.d. nonnegative random variables with
distribution G and density g and given Yk:m:n = x, denote by Y

(k)
i , i = 1, 2, ..., p, the residual

lifetimes of the remaining items. If X1 ≤lr Y1 and f and g are logconvex, then X
(k)
1 ≤lr Y

(k)
1 .
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Proof. We denote F by H1, G by H2, f by h1, and g by h2. Let H̄i = 1−Hi, i = 1, 2. We
need to prove that

h
(k)
i,m,n(x) =

∞∫

0

hi(x + t)
H̄i(t)

ck−1hi(t){H̄i(t)}γk−1ξk(Hi(t))dt =

= ck−1

∞∫

0

hi(x + t)hi(t){H̄i(t)}γk−2ξk(Hi(t))dt

is TP2 in (i, x) ∈ {1, 2} ×R+. First we use an inductive argument (on k = 1, 2, ..., m) to show
that ξk(Hi(t)) is TP2 in (i, t) ∈ {1, 2} × R+. The proof for the case k = 1 is trivial, and for
k = 2, it is easy to verify that

ξ2(Hi(t)) =
1− {H̄i(t)}R1+1

R1 + 1
is TP2 in (i, t) ∈ {1, 2} ×R+. Now assume that ξk−1(Hi(t)) is TP2 in (i, t) ∈ {1, 2} ×R+. It is
easily shown that

ξk(Hi(t)) =
∫

R+

I[0,t](ω)hi(ω){H̄i(ω)}Rk−1ξk−1(Hi(ω))dω, k = 2, 3, ...,m.

From the assumption X1 ≤lr Y1, we get that hi(ω) and {H̄i(ω)}Rk−1 are both TP2 in (i, ω) ∈
{1, 2} ×R+. Also, the indicator function I[0,t](ω) is TP2 in (ω, t) ∈ R+ ×R+. On noting that
a product of TP2 kernels is TP2, we can use the Basic Composition Formula (see, for example,
[10]) to get that ξk(Hi(t)) is TP2 in (i, t) ∈ {1, 2} ×R+.

From the fact that 1 ≤ γm < γm−1 < · · · < γ1, it can be easily seen that γk ≥ 2, and hence
{H̄i(t)}γk−2 is TP2 in (i, t) ∈ {1, 2}×R+. The logconvexity of hi means that hi(x+ t) is TP2 in
(x, t) ∈ R+×R+, and the assumption X1 ≤lr Y1 implies that hi(t) is TP2 in (i, t) ∈ {1, 2}×R+,
and hi(x + t) is TP2 in (i, x) ∈ {1, 2} ×R+ and in (i, t) ∈ {1, 2} ×R+. Using again, the fact
that a product of TP2 kernels is TP2, and applying Theorem 5.1 on page 123 of [10], we find
that h

(k)
i,m,n(x) is TP2 in (i, x) ∈ {1, 2} ×R+; that is X

(k)
1 ≤lr Y

(k)
1 .

Remark 2. According to Theorem 1.C.72 in [21], logconvexity of densities of X1 and Y1,
together with the assumption X1 ≤lr Y1, implies that X1 ≤lr↓ Y1; that is X1 is smaller than Y1

in the down shifted likelihood ratio order. This means that g(x + t)/f(t) is increasing in t ≥ 0
for all x ≥ 0.

Theorem 6. Let Xi, Yi, X
(k)
i and Y

(k)
i be defined as in Theorem 5, and F̄ and Ḡ denote the

survival functions of Xi and Yi, respectively. If X1 ≤lr Y1, and if F̄ and Ḡ are logconvex (i.e.
X1 and Y1 are DFR), then X

(k)
1 ≤hr Y

(k)
1 .

Proof. To prove the theorem, we show that

H̄
(k)
i,m,n(x) =

∞∫

0

H̄i(x + t)
H̄i(t)

hi(t){H̄i(t)}γk−1ξk(Hi(t))dt =

=

∞∫

0

H̄i(x + t)hi(t){H̄i(t)}γk−2ξk(Hi(t))dt

is TP2 in (i, x) ∈ {1, 2}×R+. By following an argument similar to that in the proof of Theorem
5, we have

hi(t){H̄i(t)}γk−2ξk(Hi(t))
to be TP2 in (i, t) ∈ {1, 2} × R+. The logconvexity of H̄i means that H̄i(x + t) is TP2 in
(t, x) ∈ R+ ×R+. The assumption X1 ≤lr Y1 implies that X1 ≤hr Y1, which, in turn implies
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that H̄i(x+ t) is TP2 both in (i, x) ∈ {1, 2}×R+ and in (i, t) ∈ {1, 2}×R+. Thus, by Theorem
5.1 on page 123 of [10], we see that H̄

(k)
i,m,n(x) is TP2 in (i, x) ∈ {1, 2} ×R+. This means that

X
(k)
1 ≤hr Y

(k)
1 .

Theorem 7. Let X1, X2, ..., Xn be i.i.d. nonnegative random variables with absolutely
continuous cdf F and pdf f .

(a): If f is logconvex (logconcave), then X
(k−1)
1 ≤lr X

(k)
1 (X(k)

1 ≤lr X
(k−1)
1 ), k = 2, 3, ..., n.

(b): If F is DFR (IFR), then X
(k−1)
1 ≤hr X

(k)
1 (X(k)

1 ≤hr X
(k−1)
1 ), k = 2, 3, ..., n.

Proof. To prove part (a), note that from (2), the density of X
(k)
1 can be obtained as

f
X

(k)
1

(x) =

∞∫

0

f(x + t)
F̄ (t)

fXk:m:n
(t)dt.

It is proved in [12] that Xk−1:m:n ≤lr Xk:m:n. This is equivalent to say that fXk:m:n
(t) is TP2 in

(k, t) ∈ {1, 2, ..., n} ×R+. The logconvexity (logconcavity) of f means that f(x + t) is TP2 in
(t, x) ∈ R+×R+. Thus, it follows from the Basic Composition Formula (see [10]) that f

X
(k)
1

(x)

is TP2 in (k, x) ∈ {1, 2, ..., n} ×R+; that is X
(k−1)
1 ≤lr X

(k)
1 (X(k)

1 ≤lr X
(k−1)
1 ).

Part (b) can be proved similarly on noting that if F is DFR (IFR), then F̄ is logconvex
(logconcave), which in turn, implies that F̄ (x + t) is TP2 (RR2) in (t, x) ∈ R+ ×R+.

Next, we prove some other properties of the residual lifetimes of the remaining items in a
test, when the parent density or survival function is logconvex. As before we assume that the
underlying distribution is absolutely continuous.

Theorem 8.
(a): If X1 has a logconvex density f , then the joint density f

(k)
p (x1, x2, ..., xp) of

(X(k)
1 , X

(k)
2 , ..., X

(k)
p ) is TP2 in pairs.

(b): If X1 has a logconvex survival function, then the joint survival function of (X(k)
1 , X

(k)
2 ,

..., X
(k)
p ) is TP2 in pairs.

Proof. First, we prove part (a). By (3), the the joint density of (X(k)
1 , X

(k)
2 , ..., X

(k)
p ) can be

written as

f (k)
p (x1, x2, ..., xp) =

∞∫

0




p∏

j=1

f(xj + t)


 fXk:m:n

(t)
F̄ (t)

dt.

The logconvexity of f implies that f(xj + t) is TP2 in (xj , t) ∈ R+ ×R+. Therefore,
f

(k)
p (x1, x2, ..., xp) is TP2 in pairs. The proof of part (b) is omitted since it is similar to the proof

of part (a) (see equation (2)).
In the literature, various notions of positive dependence of two random vectors have been

introduced. “Conditionally i.i.d.” is one of these concepts. In the following, we mention an
interesting result concerning conditionally i.i.d. random variables.

Let X1, X2, ..., Xn be conditionally i.i.d. (this, of course, implies that Xi’s are exchangeable),
Y1, Y2, ..., Yn are i.i.d., and all the Xi’s and Yi’s have the same marginal distributions. In [22] it
is shown that under these conditions

(FY1:n(t), FY2:n(t), ..., FYn:n(t)) Â (FX1:n(t), FX2:n(t), ..., FXn:n(t)) , ∀t ∈ R,

and
(Eh(Y1:n), Eh(Y2:n), ..., Eh(Yn:n)) Â (Eh(X1:n), Eh(X2:n), ..., Eh(Xn:n)) ,

for all monotone functions h, such that the expectations exist. Here Â denotes the majorization
order, see [15]. A vector a = (a1, a2, ..., an) is said to be smaller in the majorization order
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than the vector b = (b1, b2, ..., bn) (denoted b Â a) if
n∑

i=1
ai =

n∑
i=1

bi and if
j∑

i=1
a[i] ≤

j∑
i=1

b[i] for

j = 1, 2, ..., n− 1, where a[i] and b[i] are the ith largest elements of a and b, respectively. Let us
define the exchangeable random variables

Wi =
X

(k)
i

cXk:m:n + 1
, i = 1, 2, ..., p,

where c is a real valued constant, such that cXk:m:n + 1 > 0 almost surely. The next theorem
provides a multivariate ordering between Xi’s and Wi’s in the case where the parent distribution
is GPD.

Theorem 9. Let X1, X2, ..., Xn be i.i.d. random variables with common GPD(c, .) distribu-
tion for some c ∈ R. Then(

FX1:p(t), FX2:p(t), ..., FXp:p(t)
) Â (

FW1:p(t), FW2:p(t), ..., FWp:p(t)
)
,

and
(Eh(X1:p), Eh(X2:p), ..., Eh(Xn:p)) Â (Eh(W1:p), Eh(W2:p), ..., Eh(Wp:p)) ,

for all monotone functions h such that the expectations exist.
Proof. It is known that for the GPD, Wi

d= Xi (see Theorem 1) and W1,W2, ...,Wn are
conditionally i.i.d. Now the result follows easily from the result of [22].
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