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A CHARACTERIZATION OF CONTINUOUS DISTRIBUTIONS
VIA REGRESSION ON PAIRS OF RECORD VALUES
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Summary

The exponential type is characterized in terms of the regression of a (possibly non-linear)
function of a record value with its adjacent record values as covariates. Monotone trans-
formations extend this result to more general settings, and these are illustrated with some
specific examples.
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1. Introduction

Let X1, X2, . . . be independent copies of a random variable X whose distribution func-
tion is denoted by F. There have been many studies on characterizations of F via linear
regression relations of one order statistic on one or two other order statistics. See Wesolowski
& Ahsanullah (1997) for references and the most complete results. Similarly, the regression
of one record value on another has received attention. Denote record times by L(1) = 1 and,
for n > 1,

L(n) = min{j : j > L(n − 1) and Xj > XL(n−1)} ,

and corresponding record values by X(n) = XL(n) ; see Nevzorov (2001).
Fix positive integers n and s, and real constants a and b. The one-variable linear re-

gression problem is to determine all F for which

E
(
X(n + s) | X(n) = x

) = ax + b . (1)

Nagaraja (1977) first addressed this in the adjacent case s = 1, showing that solutions exist if
a > 0 and that solutions comprise a unique type whose form depends on the value of a relative
to unity. Ahsanullah & Wesolowski (1998) proved that the same solutions are determined in
the case s = 2. Finally Dembinska & Wesolowski (2000) proved that the general case can be
reduced to an application of the Lau–Rao theorem for solving the extended Cauchy equation.
See Arnold et al. (1998 Section 4.4.2,3) for a compact account of the Lau–Rao theorem.

A formal extension of these results replaces (1) with E(h(X(n+s)) | X(n) = x) = ax + b,

where h is a continuous and strictly monotonic function. In the case s = 1 Franco & Ruiz
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(1996) investigate the deeper problem of determining F from a specification of this function,
which need not be linear. In the adjacent case, these problems, as well as order-statistics
versions, can be transformed to characterization by the form of the conditional expectation of
X given truncation events such as {X ≤ x}. These connections are reviewed by Pakes (2004)
who shows how product integration yields simple solutions requiring very weak conditions,
if any, on F.

In this paper we investigate the characterization of F in terms of the bivariate regression
function E(H(X(n)) | X(n − 1) = u, X(n + 1) = v) where �F ≤ u < v ≤ rF and �F =
inf{x: F(x) > 0} and rF = sup{x: F(x) < 1}, respectively, are the left and right extremities
of F. Pakes (2004 Section 5) alludes briefly to this problem, but we aim to give an elementary
treatment for the continuous case.

2. A characterization of the exponential type

Let F̄ (x) = 1 − F(x) and, for �F ≤ x < rF , let B(x) = − log F̄ (x). The Markov
dependence of record values (Arnold, 1998 p .28 or Nevzorov, 2001 p .68) can be used to
show that

Pr
(
X(n) ∈ dx | X(n − 1) = u, X(n + 1) = v

) = dB(x)

B(v) − B(u)
,

whence

E
(
H

(
X(n)

) | X(n − 1) = u, X(n + 1) = v
) = 1

B(v) − B(u)

∫ v

u

H(x) dB(x) . (2)

We draw two conclusions from this expression. First, if F is the standard exponential distri-
bution function then B(x) = x (x ≥ 0) and hence the right-hand side of (2) equals

1

v − u

∫ v

u

H(x) dx = h(v) − h(u)

v − u
,

where h′(x) = H(x). Second, if h(x) = cx + b, where c and b are real constants, then the
right-hand side of (2) equals c for any choice of F. Consequently, without loss of generality
we can restrict attention to the regression relation

E
(
h′(X(n)

) | X(n − 1) = u, X(n + 1) = v
) = h(v) − h(u)

v − u
(�F < u < v < rF ) , (3)

subject to a restriction on h which excludes affine functions. Our first result does this under
an additional restriction to absolutely continuous F. In the sequel, in any reference to (2) we
understand that H(x) = h′(x).

Theorem 1. Suppose F is absolutely continuouswith density function f, that h is continuous
in [�F , rH ] and continuously differentiable in (�F , rF ), and that almost everywhere in this
open interval,

h′(x) �= h(x) − h1

x − �F

, (4)

where h1 = h(�F+). Then (3) holds if and only if �F > −∞, rF = ∞ and

F(x) = 1 − e−c(x−�F ) (x ≥ �F ) , (5)

where c > 0 is an arbitrary constant.
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Proof. Equation (5) implies (3). For the converse, the continuity of F entails B(�F ) = 0,

and hence letting u → �F+ in (3), it follows from (2) that

∫ v

�F

h′(x)B′(x) dx = B(v)
h(v) − h1

v − �F

(�F < v < rF ) .

Differentiating and re-arranging terms yields the identity

(
h′(v) − h(v) − h1

v − �F

)
B′(v) = B(v)

v − �F

(
h′(v) − h(v) − h1

v − �F

)
.

The condition (4) implies that B′(v)/B(v) = 1/(v − �F ) and hence that F̄ (v) = e−c(v−�F ) .
It follows that �F > −∞ and c > 0, and then the continuity of F implies that rF = ∞.

We conjecture that the absolute continuity assumption is unnecessary. Lemma 1 shows
that we can transfer this assumption to a further smoothness assumption about h.

Lemma 1. If h′′(x) exists in (�F , rF ), and (3) and (4) both hold, then F is absolutely con-
tinuous.

Proof. Again with u = �F , integration by parts of the integral in (2) and re-arranging yields

∫ v

�F

B(x)h′′(x) dx = B(v)
(
h′(v) − h(v) − h1

v − �F

)
.

The integral is absolutely continuous and the coefficient of B(v) is differentiable, and so it
follows from the assumptions that B is absolutely continuous.

Differing choices of h yield many characterizations of the exponential type. One choice
satisfying Lemma 1 is h(x) = 1

2 x2.

Theorem 2. The continuous random variable X has the exponential type (5) if and only if

E
(
X(n) | X(n − 1) = u, X(n + 1) = v

) = 1
2 (u + v) (�F < u < v < ∞) .

3. Monotone transformations

In this section we give a formal generalization of Theorem 1 which arises from monotone
transformation of X. Specifically, we give a regression condition which specifies the form
of the distribution function G of a random variable Y. The corresponding record values are
denoted by Y (n).

Theorem 3. Suppose that:
(i) a random variable Y has a continuous distribution function G supported on [�G, rG];

(ii) the function R is continuous and strictly increasing in (�G, rG) and

τ = R(�G+) > −∞ and R(rG) = ∞ ; (6)

and
(iii) h is twice differentiable in (�, ∞).
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Then

E
(
h′(R(

Y (n)
)) | Y (n − 1) = s, Y (n + 1) = t

)

= h(R(t )) − h(R(s))

R(t ) − R(s)
(�G < s < t < rG) (7)

if and only if
G(y) = 1 − e−c(R(y)−τ) (�G < y < rG) , (8)

where c > 0 is an arbitrary constant. If (ii) is replaced by

(ii ′ ) the function R is continuous and strictly decreasing in (�G, rG) and

R(�G+) = ∞ and τ = R(rG) ;
then (7) holds if and only if

G(y) = e−c(R(y)−τ) (�G < y < rG) , (9)

where c > 0 is an arbitrary constant.

Proof. If X = R(Y ) then the random variables R(Y (j )) (j = n − 1, n, n + 1) have the
same joint distribution as X(n − 1), X(n), X(n + 1). It follows that (7) is equivalent to (3)
with u = R(s) and v = R(t ). Theorem 1 and Lemma 1 imply that R(Y ) has an exponential
type distribution (5) (with τ replacing �F ) and the assumptions about R yield

G(y) = P
(
R(Y ) ≤ R(y)

) = P
(
X ≤ R(y)

)
,

whence (8). The argument is reversible. Equation (6) is necessary for the continuity of G.

Altering some details shows that when (ii ′ ) replaces (ii) then (7) is equivalent to (9).

Combining Theorems 2 and 3 yields the following result which gives many special cases.

Theorem 4. If (i) and (ii) (resp. (ii ′)) of Theorem 3 hold then (8) (resp. (9)) holds if and
only if

E
(
R

(
Y (n)

) | Y (n − 1) = s, Y (n + 1) = t
) = 1

2

(
R(s) + R(t )

)
(�G < s < t < rG) .

Examples 1–3 follow from Theorem 4 with Condition (ii).

Example 1. If �G = 0, rG = ∞, and R(y) = yα for some constant α > 0, then τ = 0 and
Y has the Weibull distribution with G(y) = 1 − exp(−cyα) if and only if

E
(
Y α(n) | Y (n − 1) = s, Y (n + 1) = t

) = 1
2 (sα + tα) (0 < s < t < ∞) .

Example 2. If �G = 0, rG = 1 and R(y) = − log(1−y) then τ = 0 and G(y) = 1−(1−y)c

if and only if

E
(

log
(
1−Y (n)

) | Y (n−1) = s, Y (n+1) = t
) = 1

2 log
(
(1−s)(1−t )

)
(0 ≤ s < t < 1) .

Example 3. If �G = a > 0, rG = ∞ and R(y) = log(y/a) then τ = 0 and Y has the Pareto
distribution with

G(y) = 1 − (a/y)c (y ≥ a)

if and only if

E
(

log Y (n) | Y (n − 1) = s, Y (n + 1) = t
) = log

√
st (a ≤ s < t < ∞) .

This is unexpected insofar as the form of the regression relation is independent of a.
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Examples 4 and 5 arise from Theorem 4 with Condition (ii ′ ).

Example 4. If �G = −∞, rG = ∞, and R(y) = e−y then τ = 0 and Y has the Gumbel
extremal process marginal distribution function G(y) = exp(−ce−y) if and only if

E
(
e−Y (n) | Y (n − 1) = s, Y (n + 1) = t

) = 1
2 (e−s + e−t) (−∞ < s < t < ∞) .

The case c = 1 is the standard Gumbel distribution function $(y).

Example 5. If �G = −∞, rG = ∞, and R(y) = log(1 + e−y) then τ = 0 and Y has a
generalized logistic distribution, G(y) = (1 + e−y)−c if and only if

E
(

log(1 + e−Y (n)) | Y (n − 1) = s, Y (n + 1) = t
)

= 1
2 log

(
(1 + e−s)(1 + e−t)

)
(−∞ < s < t < ∞) .

The constructions based on Condition (ii) are particular cases of the following. Sup-
pose A(y) is a continuous distribution function with support [�G, rG], and strictly increasing
therein, and if R(y) = − log Ā(y) then

G(y) = 1 − (
1 − A(y)

)c

for some c > 0 if and only if (7) holds. Thus A(y) = 1−exp(−yα) for Example 1, yI[0,1](y)

for Example 2, and 1 − a/y for Example 3. Similarly, taking R(y) = − log A(y) yields
G(y) = (A(y))c if and only if (7) holds. Thus A(y) = $(y) for Example 4, and A(y) =
(1 + e−y)−1 for Example 5.
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