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Abstract

A new nonparametric test for two sample problem based on order statis-
tics is suggested. This test can be successful in the case of small samples.
The probabilities of the statistic are given. Comparisons with Kolmogorov-
Smirnov, Mann Whitney-Wilcoxon, and Wilks’ empty block test for small
sample sizes are made by the simulation.
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1. Introduction

Let =c be the class of all continuous distribution functions (d.f.’s), X1,
X2, ..., Xn and Y1, Y2, ..., Ym be random samples obtained from populations
with d.f. F and Q respectively, F, Q ∈ =c. Denote the probability measures
as P1 and P2 according to F and Q respectively. Let ℘ be the class of
probability measures according to =c .

One of the main problem of nonparametric statistics is to test the null
hypothesis H0 : F (x) = Q (x) against a composite alternative H1 : F (x) 6=
Q (x) ; F, Q ∈ =c.

This also can be formulated as the following:

H0 : (F, Q) ∈ =0, H1 : (F, Q) ∈ =∗ \ =0,
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where

=∗ = {(F, Q) : (F, Q) ∈ =c} ,=0 = {(F, Q) : (F, Q) ∈ =∗; F = Q} .

The test function for testing H0 against H1 is determined as follows,

Ψ (X1, X2, ..., Xn, Y1, Y2, ..., Ym) =

{
1, if (X1, X2, ..., Xn, Y1, Y2, ..., Ym) ∈ Ω
0, otherwise

where Ω ∈ Rn+m is the critical set.
The function

βΨ(P1, P2) = EP1×P2Ψ (X1, X2, ..., Xn, Y1, Y2, ..., Ym)

= P1 × P2 ((X1, X2, ..., Xn, Y1, Y2, ..., Ym) ∈ Ω) , P1, P2 ∈ ℘

is the power function of the test, where P1×P2 denotes the product of proba-
bility measures P1 and P2; so that P1×P2 ((X1, X2, ..., Xn, Y1, Y2, ..., Ym) ∈ Ω)
is the probability of the event ((X1, X2, ..., Xn, Y1, Y2, ..., Ym) ∈ Ω) , while X
has distribution P1 and Y has distribution P2.

According to Neyman-Pearson theory the desirable property of the test
Ψ is

P1 × P1 {(X1, X2, ..., Xn, Y1, Y2, ..., Ym) ∈ Ω} ≤ α, for all P1 ∈ ℘,

for a given level of significance α.
If

lim
n,m→∞

βΨ (P1, P2) = 1, for all P1 6= P2,

then the test Ψ is called consistent for checking H0 against H1.

If

EP1×P1Ψ (X1, X2, ..., Xn, Y1, Y2, ..., Ym) = α, for all P1 ∈ ℘, (1)

then the test Ψ is called nonparametric. If (1) holds asymptotically for large
values of m and n then Ψ is called asymptotically nonparametric test.

Tests of this type have been devised by Dixon (1940), Mathisen (1943),
Smirnov (1939), Wald and Wolfowitz (1940), Wilks (1961), Borovkov (1975).
Most of other tests are somewhat the modification of Wilks’ empty block test

2



or Kolmogorov-Smirnov’s test. For more details one can see e.g. Borovkov
(1984).

Let X(1) ≤ X(2) ≤ ... ≤ X(n) and Y(1) ≤ Y(2) ≤ ... ≤ Y(m) be the
order statistics constructed from X1, X2, ..., Xn and Y1, Y2, ..., Ym, respec-
tively. Kolmogorov-Smirnov test statistic is constructed by the distance
sup

x
|Fn(x)−Gm(x)| , where Fn(x) and Gm(x) are empirical distribution

functions of the samples X1, X2, ..., Xn and Y1, Y2, ..., Ym, respectively. Con-
sider the sample blocks ∆1 =

(
−∞, X(1)

]
, ∆2 =

(
X(1), X(2)

]
, ..., ∆n =(

X(n−1), X(n)

]
, ∆n+1 =

(
X(n),∞

)
. Let sr = sr(n, m) be the number of

blocks containing exactly r element of another sample Y1, Y2, ..., Ym. A class
of tests can be constructed using test statistic based on linear combina-
tion

∑k
r=0 crsr, where c0, c1, ..., ck are given weight constants. When k = 0

then we have the Wilks’ empty block test. Wilks’ test is based on the ran-
dom variables r1, r2, ..., rn+1, where ri shows the number of the observations
of the sample Y1, Y2, ..., Ym falling into the random interval

(
X(i−1), X(i)

]
, (

X(0) = −∞, X(n+1) = ∞). Let u1 = F (X(1)), u2 = F (X(2)) − F (X(1)), ...,
un = F (X(n)) − F (X(n−1)), un+1 = 1 − F (X(n)) be the coverages of blocks.
The major fact used in all classical tests based on blocks is that the condi-
tional probability for random vector (r1, r2, ..., rn+1) to have a specific value
(r′1, r

′
2, ..., r

′
n+1), given (u1, u2, ..., un) is

m!

r′1!r
′
2!..., r

′
n+1!

u
r′1
1 u

r′2
2 ...ur′n

n (1− u1 − u2 − ...− un)r′n+1 .

In this work we construct a nonparametric test for testing H0 against
H1, based on the properties of order statistics to be an invariant confidence
intervals containing the main distributed mass, i.e. if X1, X2, ..., Xn, Xn+1 is
a random sample with continuous distribution function then

P
{
Xn+1 ∈ (X(i), X(j))

}
=

j − i

n + 1
(2)

(see Madreimov, Petunin, 1982). The proposed test can be used successfully
when sample sizes are small.
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2. The test based on the order statistics

Let X(1) ≤ X(2) ≤ ... ≤ X(n) be the order statistics constructed from
X1, X2, ..., Xn. Denote

∆1 =
(
−∞, X(1)

]
, ∆2 =

(
X(1), X(2)

]
, ..., ∆n =

(
X(n−1), X(n)

]
, ∆n+1 =

(
X(n),∞

)
.

Define the following random variables (r.v.’s).

ξk
i =

{
1, Yk ∈ ∆i

0, Yk /∈ ∆i
k = 1, 2, ...m, i = 1, 2, ..., n + 1

Let

ζi =
m∑

k=1

ξk
i .

It is clear that ζi is the number of observations (Y1, Y2, ..., Ym) falling into
the interval ∆i. When the hypothesis H0 is true then

P
{
Yi ∈

(
X(k), X(l)

)}
=

l − k

n + 1
, 1 ≤ k < l ≤ n, i = 1, 2, ...,m

and for l = k + 1 it becomes

pk ≡ P {Yi ∈ ∆k} =
1

n + 1
, i = 1, 2, ...,m

Bairamov and Petunin (1991) introduced the notion of invariant confi-
dence interval containing the main distributed mass of general population.
Let X1,X2, ..., Xn be independent r.v.’s with common d.f. F which belongs
to a class of d.f.’s =. Suppose f1(u1,u2, ..., un) and f2(u1,u2, ..., un) are two
Borel functions with the following property:

f1(u1,u2, ..., un) ≤ f2(u1,u2, ..., un) (u1,u2, ..., un) ∈ Rn.

Let Xn+1 be a new sample point which is independent of X1,X2, ..., Xn and
has the same d.f. F . If

P {Xn+1 ∈ (f1(X1,X2, ..., Xn), f2(X1,X2, ..., Xn))} = α for all F ∈ =,
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then (f1(X1,X2, ..., Xn), f2(X1,X2, ..., Xn)) is called an invariant confidence
interval containing the main distributed mass for the class of distributions =
with confidence level α .

It is clear from (2) that the random interval (X(k), X(l)), (1 ≤ k < l ≤ n)
is an invariant confidence interval for class of all continuous distribution
functions. If f1 and f2 are continuous, symmetric and different on ev-
ery set with a nonzero lebesgue measure functions of n arguments, only
f1(X1,X2, ..., Xn) = X(i), f2(X1,X2, ..., Xn) = X(j), 1 ≤ i < j ≤ n form an
invariant confidence interval for =c (see Bairamov, Petunin ,1991).

Consider the following statistic

η =
n+1∑
k=1

(
ζk

m
− pk

)2

which can be interpreted as the sum of squared errors between frequencies
and the probabilities of the events Yk ∈ (X(i−1), X(i)) i = 1, 2, ..., n + 1.

The following lemma will be useful for further discussions.

Lemma 1. For 0 ≤ ik ≤ m, (k = 1, 2, ..., n + 1), i1 + i2 + ... + in+1 = m
it is true that

P {ζ1 = i1, ζ2 = i2, ..., ζn+1 = in+1} =

=
n!m!

i1!i2!...in+1!

∫
· · ·
∫

x1<x2<...<xn

Qi1(x1) [Q(x2)−Q(x1)]
i2 ... [Q(xn)−Q(xn−1)]

in ×

× [1−Q(xn)]in+1 dF (x1)dF (x2)...dF (xn).

Corollary 1. Assume that H0 is true. Then for 0 ≤ ik ≤ m, (k =
1, 2, ..., n + 1), i1 + i2 + ... + in+1 = m it is true that

P {ζ1 = i1, ζ2 = i2, ..., ζn+1 = in+1} =
1(

n+m
n

) .
Note that Corollary 1 coincides with assertion 14.3.1 of Wilks (1962, p.

442).
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Theorem 1. Assume that H0 is true. Let n+1 ≥ m, l1 ≡ min
(i1,i2,...in)∈℘1,2,...,n

(i21+

i22+ ...+i2n+1) = m, l2 ≡ max
(i1,i2,...in)∈℘1,2,...,n

(i21+i22+ ...+i2n+1) = m2, 0 ≤ ik ≤ m,

k = 1, 2, ..., n + 1, where ℘1,2,...,n denotes the class of all permutations of
1, 2, ..., n. Then the distribution of statistic η has the following form

P {η ≤ x} = P

{
n+1∑
k=1

(
ζk

m
− pk

)2

≤ x

}
=

=


0, x ≤ l1

m2 − a
[m2(x+a)]∑

j=l1

1
Cn

n+m
Pm,n,j , x ∈

[
l1
m2 − a, l2

m2 − a
]

1, x ≥ l2
m2 − a

where Pm,n,j is the number of sequences {i1, i2, ..., in+1} satisfying i1 + i2 +
... + in+1 = m and i21 + i22 + ... + i2n+1 = j, where [x] is a minimal integer less
than x, pk ≡ a = 1

n+1
.

Proof. From (2) one can write

P
{
ξk
i = 1

}
= P

{
X ∈

(
X(i−1), X(i)

)}
=

1

n + 1
≡ a, k = 1, 2, ...,m , i = 1, 2, ..., n+1

X(0) = −∞, X(n+1) = ∞. One has

P

(
n+1∑
k=1

ζ2
k = j

)
=

∑
i1+i2+...+in+1=m
i21+i22+...+i2n+1=j

1 =
1

Cn
n+m

Pm,n,j , j = m, m + 1, ...,m2.

(3)
It is clear that Pm,n,j = 0 for a values of j ∈ [m, m + 1, m + 2, ...,m2] for
which does not exists a sequence {i1, i2, ..., in+1} satisfying i1+i2+...+in+1 =
m and i21 + i22 + ... + i2n+1 = j.

One deserves that η may be written as follows

η =
n+1∑
k=1

(
ζk

m
− pk

)2

=
n+1∑
k=1

ζ2
k

m2
− 2a

n+1∑
k=1

ζk

m
+ (n + 1)a2 =

n+1∑
k=1

ζ2
k

m2
− a. (4)

Therefore using (3) and (4) one has

Fη(x) = P (η ≤ x) = P

(
1

m2

n+1∑
k=1

ζ2
k − a ≤ x

)
= P

(
n+1∑
k=1

ζ2
k ≤ m2(x + a)

)
,

6



=


0, x ≤ l1

m2 − a
[m2(x+a)]∑

j=l1

1
Cn

n+m
Pm,n,j , x ∈

[
l1
m2 − a, l2

m2 − a
]

1, x ≥ l2
m2 − a

=


0, x ≤ 1

m
− 1

n+1

[m2(x+a)]∑
j=m

1
Cn

n+m
Pm,n,j , x ∈

[
1
m
− 1

n+1
, 1− 1

n+1

]
1, x ≥ 1− 1

n+1

Thus the theorem is proved.

Intuitively the large values of η conforms with H1 . Hence we can reject
H0 for large values of η and the declared α. So we propose the following test
function as

Ψ∗ (X1, X2, ..., Xn, Y1, Y2, ..., Ym) =

{
1, η > xα(m)
0, η ≤ xα(m)

.

Denote critical region as Wα = {(X1, X2, ..., Xn, Y1, Y2, ..., Ym) : η > xα(m)} .
Considering X1, X2, ..., Xn as a training sample, Y1, Y2, ..., Ym as a control

sample and selecting xα(m) such that xα(m) → 0 as m →∞ one can prove
the following

Theorem 3. Let F 6= Q and for any x1 < x2 < ... < xn there exist
xk, {k = 2, 3...n} such that Q(xk)−Q(xk−1) 6= F (xk)− F (xk−1). Then the
test Wα for testing H0 : F = Q , against H1 : F 6= Q is consistent , i.e.

lim
m→∞

PF × PQ

{
n+1∑
i=1

(
ζi

m
− 1

n + 1

)2

> xα(m)

}
= 1, for F 6= Q.

Proof. Let −∞ < x1 < x2 < ... < xn < ∞ and

∆∗
1 = (−∞, x1] , ∆

∗
2 = (x1, x2] , ..., ∆

∗
n+1 = (xn,∞)

be the nonrandom intervals. Define the r.v.’s

ξ∗ki =

{
1, Yk ∈ ∆∗

i

0, Yk /∈ ∆∗
i

, k = 1, 2, ...,m i = 1, 2, ..., n + 1
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and ζ∗i =
m∑

k=1

ξ∗ki . It is clear that

P
{
ξ∗ k
i = 1

}
= P {Yk ∈ (xi−1, xi)} ≡ p∗i =

xi∫
xi−1

dQ(x) = Q(xi)−Q(xi−1)

Then one can write

PF × PQ

{
n+1∑
i=1

(
ζi

m
− 1

n + 1

)2

> xα(m)

}
=

= n!

∫
· · ·
∫

P

{
n+1∑
i=1

(
ζi

m
− 1

n + 1

)2

> xα(m)
∣∣X(1) = x1, ..., X(n) = xn

}
×

×dF (x1)...dF (xn)

= n!

∫
· · ·
∫

x1<x2<...<xn

P

{
n+1∑
i=1

(
ζ∗i
m
− 1

n + 1

)2

> xα(m)

}
dF (x1)...dF (xn)

= n!

∫
· · ·
∫

x1<x2<...<xn

P

{
n+1∑
i=1

(
ζ∗i
m
− p∗i + p∗i −

1

n + 1

)2

> xα(m)

}
dF (x1)...dF (xn)

= n!

∫
· · ·
∫

x1<x2<...<xn

P

{(
n+1∑
i=1

(
ζ∗i
m
− p∗i

)2

+ 2
n+1∑
i=1

(
ζ∗i
m
− p∗i

)(
p∗i −

1

n + 1

)
+

+
n+1∑
i=1

(
p∗i −

1

n + 1

)2
)

> xα(m)

}
dF (x1)...dF (xn)

By the law of large numbers ζ∗i

m
→ p∗i , a.s. as m →∞.

P

{
n+1∑
i=1

(
ζi

m
− 1

n + 1

)2

> xα(m)

}
→

m→∞
n!

∫
· · ·
∫

x1<x2<...<xn

P

{
n+1∑
i=2

(
p∗i −

1

n + 1

)2

> 0

}
×

×dF (x1)...dF (xn) (5)

Then one obtains from (5) for large n,

lim
m→∞

P

{
n+1∑
i=1

(
ζi

m
− 1

n + 1

)2

> xα(m)

}
=
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= n!

∫
· · ·
∫

x1<x2<...<xn

P

{
n+1∑
i=2

(
Q(xi)−Q(xi−1)−

1

n + 1

)2

> 0

}
dF (x1)...dF (xn)

= n!

∫
· · ·
∫

x1<x2<...<xn

P

{
n+1∑
i=2

(Q(xi)−Q(xi−1)− F ∗
n(xi) + F ∗

n(xi−1))
2 > 0

}
dF (x1)...dF (xn)

v n!

∫
· · ·
∫

x1<x2<...<xn

P

{
n+1∑
i=2

(Q(xi)−Q(xi−1)− F (xi) + F (xi−1))
2 > 0

}
dF (x1)...dF (xn) = 1

Thus the theorem is proved.
Now consider the test Wα = {(X1, X2, ..., Xn, Y1, Y2, ..., Ym) : η > xα(m)} , where

xα is determined from the equality

P {(X1, X2, ..., Xn, Y1, Y2, ..., Ym) ∈ Wα /H0} = 1− Fη(xα).

The numerical values of Fη(x)−d.f. of η for n = m = 15 is provided in
Table 3.

Here, Fη(xα) should be close to one, in order to make small probability
of error of type one. As the next step the d.f.

Fη(x) =

[m2(x+a)]∑
j=l1

1

Cn
n+m

Pm,n,j , x ∈
[

l1
m2

− a,
l2
m2

− a

]
. (6)

has been tabulated for different values of n and m (n + 1 ≥ m). The values
Pm,n,j in (6) calculated using the following iterative relation

m∑
i1=0

m−i1∑
i2

...

m−i1−i2−...−in∑
in+1=0

I(i1, i2, ..., in+1, m, n) ,

where

I(i1, i2, ..., in+1, m, n) =

{
1, if i21 + i22 + ... + i2n+1 = j, i1 + i2 + ... + in+1 = m
0, otherwise

.

Using Minitab package program the samples from different distributions
are obtained. These samples are given in Table 1. Comparison of results for
two sample problem made for test Wα,based on test statistics η with Mann

9



Whitney-Wilcoxon and Kolmogorov Smirnov tests. Using software SPSS it
is observed that the test Wα for small sample size gives more efficient results.

Table 1.The values of order statistics drawn from different distribution
n = 15.

For an evaluation of the results obtained by application of η statistic
and for comparison with the other tests statistics we provide the following
numerical examples:

Table 2. Comparison of test based on η statistics with Mann Whitney
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Wilcoxon, Kolmogorov Smirnov and Wilks’ empty block tests for α = 0.05.

Comparison with the Wilks’ empty block test is also made. Given in
Table 2 critical region s0 ≥ stable for Wilks’ empty block test is constructud
as follows:

Suppose X1, X2, ..., Xn is a sample obtained from distributions with d.f.
F (x) and Y1, Y2, ..., Ym is a sample obtained from distributions with d.f.
Q(x). Let X(1) ≤ X(2) ≤ ... ≤ X(n) be the order statistics constructed from
X1, X2, ..., Xn.

The intervals
(
−∞, X(1)

]
,
(
X(1), X(2)

]
, ...,

(
X(n−1), X(n)

]
,
(
X(n),∞

)
are called

sample blocks B
(1)
1 , B

(2)
1 , ..., B

(n+1)
1 respectively. Let si be the number of the

blocks B
(1)
1 , B

(2)
1 , ..., B

(n+1)
1 which contain i elements from Y1, Y2, ..., Ym. That

is, s0 the number which contain 0 elements from Y1, Y2, ..., Ym. (s0, s1, ..., sm)
is a multidimensional random variable which must satisfy the conditions

s0 + s1 + ... + sm = n + 1

s1 + 2s2 + ... + msm = m.
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Assume that H0 is true. Probability function of s0 is

P (s0) =

(
n + 1

s0

)(
m− 1
n− s0

)
(

n + m
n

)
s0 = k, k + 1, ..., n , where k = max(0, n−m + 1).

The test has its critical region Waα.

Waα = {(X1, X2, ..., Xn, Y1, Y2, ..., Ym) : s0 > s0α(α, n, m)} .

s0α(α, n, m) is the smallest integer for

P (Waα \ (F1, F2) ∈ =0) ≤ α. (7)

For n = 15 and m = 15 s0α(α, n, m) = stable = 10 found from (7). Using
Table 1 we obtained values of s0. In the table 2 results of Wilks empty block
test is presented.

Now using Table 2 we try to explain how to use the test based on the η
statistic.

Case 1. (See Table 2) Let X1, X2, ..., Xn (n = 15) be a sample ob-
tained from distribution with d.f. F (x) and Y1, Y2, ..., Ym (m = 15) be a
sample obtained from distribution with d.f. Q(x). Here F (x) is a uniform
over (0, 1) distribution function and Q(x) is the standard Normal distribu-
tion function .

We want to test hypothesis H0 : F (x) = Q(x) by the help of η statistic.
Consider

∆1 =
(
−∞, X(1)

]
, ∆2 =

(
X(1), X(2)

]
, ..., ∆n =

(
X(n−1), X(n)

]
, ∆n+1 =

(
X(n),∞

)
.

Denote by ζi the number of observations Y1, Y2, ..., Y15 falling to ∆i, i =
1, 2, ..., 15.

That is ζ1 = 10 , ζ2 = 1, ζ3 = 0, ζ4 = 1, ζ5 = 0, ζ6 = 0, ζ7 = 0, ζ8 = 1, ζ9 =
0, ζ10 = 0, ζ11 = 0, ζ12 = 0, ζ13 = 2, ζ14 = 0, ζ15 = 0, ζ16 = 0. By definition the

numerical value of η statistic has been calculated as η =
n+1∑
k=1

(
ζk

m
− a
)2

. Thus

η =

(
10

15
− 1

16

)2

+ 3

(
1

15
− 1

16

)2

+

(
2

15
− 1

16

)2

+ 11

(
0− 1

16

)2

= 0.4130
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and ηtable can be found from the Table 3 (see Appendix) for n = 15 and
m = 15. Fη

(
m2(xα + 1

n+1
)
)

= 0.95 in order to have m2
(
xα + 1

n+1

)
= 60 ⇒

152
(
xα + 1

16

)
= 60 ⇒ xα = ηtable = 0.2041 and since η > ηtable, H0 rejected.

Since, these samples are obtained from different distributions, it is ex-
pected that H0 will be rejected. X1, X2, ..., Xn ∼ U(0, 1) and Y1, Y2, ..., Ym ∼
N(0, 1). Other cases given in Table 2 is analyzed analogously.
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