
Statistics and Probability Letters 80 (2010) 196–205

Contents lists available at ScienceDirect

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

Numbers of near-maxima for the bivariate case
I. Bairamov ∗, A. Stepanov
Department of Mathematics, Izmir University of Economics, 35330, Balcova, Izmir, Turkey

a r t i c l e i n f o

Article history:
Received 21 August 2009
Received in revised form 27 September
2009
Accepted 13 October 2009
Available online 21 October 2009

MSC:
60G70
62G30

a b s t r a c t

Let Z1 = (X1, Y1) . . . , Zn = (Xn, Yn) be independent and identically distributed random
vectors with continuous distribution. Let Kn(a, b1, b2) be the number of sample elements
that belong to the open rectangle (X (n)max − a, X

(n)
max)× (Y

(n)
max − b1, Y

(n)
max + b2)— numbers of

near-maxima in the bivariate case. In the present paper, we discuss asymptotic properties
of Kn(a, b1, b2) and Kn(∞, 0,∞).

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Assume in the following, Z = (X, Y ), Z1 = (X1, Y1), . . . , Zn = (Xn, Yn) are independent and identically distributed
random vectors with continuous distribution F(x, y) andmarginal distributions H(x) = P{X ≤ x} and G(y) = P{Y ≤ y}. Let

Mn =
{
Z i : Xi = max{X1, . . . , Xn}

}
(1 ≤ i ≤ n).

Denote the coordinates of Mn as (X
(n)
max, Y

(n)
max). The first coordinate X

(n)
max is the maximum among X1, . . . , Xn, and Y

(n)
max is the

concomitant of this maximum.
For a > 0, b1 > 0, b2 > 0, let us define

Kn(a, b1, b2) = #{j = 1, 2, . . . , n : Z j ∈ Π},

where Π is the open rectangle (X (n)max − a, X
(n)
max) × (Y

(n)
max − b1, Y

(n)
max + b2). That way, Kn(a, b1, b2), which can take values

0, 1, . . . , n− 1, is the number of sample observations registered inΠ .
Let us also define Kn as

Kn = K(∞, 0,∞).

The variable Kn is the number of sample observations that are registered in the upper left quarter-plane defined by the lines
x = X (n)max and y = Y

(n)
max.

In the univariate case the asymptotic theory of the numbers of near-maxima is discussed in Pakes and Steutel (1997),
Khmaladze et al. (1997), Pakes and Li (1998), Li and Pakes (1998), Li (1999), Pakes (2000, 2005), Hashorva and Hüsler (2000,
2005, 2008), Hashorva (2003), Hu and Su (2003), Balakrishnan and Stepanov (2004, 2005, 2008), Dembinska et al. (2007),
Balakrishnan et al. (2009), and Bairamov and Stepanov (under review); see also the references in these papers.
The number of double maxima is investigated in the papers of Hashorva and Hüsler (2001, 2002), and Hashorva (2004).

In our paper, we discuss asymptotic properties of Kn(a, b1, b2) and Kn.
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The paper is organized as follows. In Section 2, we analyze the position of the random point Mn when n → ∞. This
is important, because knowing this position we are able to put conditions on the neighborhood of Mn and derive limit
results for Kn(a, b1, b2) and Kn. In Section 3, we study distributional and moment properties of Kn(a, b1, b2) and Kn. Limiting
properties of these random variables are discussed in Sections 4 and 5. In Section 4 we analyze limiting properties when the
support is bounded from the right, whereas in Section 5, these properties are investigated when the support is unbounded.
In the ends of Sections 4 and 5 illustrative examples are presented. The proof of auxiliary Proposition 5.1 is postponed till
Appendix.
The designations

d
→,

p
→,

a.s.
→ stand, in the following, for convergence in distribution, convergence in probability, and

almost sure convergence, respectively.

2. Preliminaries

Discussing asymptotic properties of Kn(a, b1, b2) and Kn let us first analyze the position of the pointMn when n→∞.
In David and Nagaraja (2003), it is shown that

P{X (n)max ≤ x, Y
(n)
max ≤ y} = n

∫ x

−∞

Hn−1(u)F(du, y).

It follows that P{X (n)max ≤ x} = Hn(x) and X
(n)
max

a.s.
→ rH , where rH = sup{x ∈ R : H(x) < 1} is the right extremity of H .

The limit behavior of Y (n)max is ruled by the type of dependence between X and Y .
(i) Suppose that for all y < rG (rG is the right extremity of G)

lim
n→∞

P{Y (n)max ≤ y} = limn→∞
n
∫

R
Hn−1(x)F(dx, y) = 0. (2.1)

This means Y (n)max
p
→ rG. In this case, we address to the distribution F as to a large maxima concomitant distribution; see

Example 5.1 in this respect.
(ii) Suppose that for some c and any ε > 0,

lim
n→∞

P{c − ε < Y (n)max ≤ c + ε} = limn→∞
n
∫

R
Hn−1(x) [F(dx, c + ε)− F(dx, c − ε)] = 1. (2.2)

This means Y (n)max
p
→ c (in particular, if c = rG, we have the previous case). Here, we address to F as to a c-stable maxima

concomitant distribution. In Example 4.1, Example 5.2 and Example 5.3 such distributions are presented.
(iii) If such a constant c , for which the limit in (2.2) equals one, does not exist, then Y (n)max converges in probability

nowhere as n → ∞. In this case, we address to F as to an unstable maxima concomitant distribution. For example, if
F(x, y) = H(x)G(y), i.e. X and Y are independent, then P{Y (n)max ≤ y} = G(y) and for all c

P{c − ε < Y (n)max ≤ c + ε} = G(c + ε)− G(c − ε) < 1.
In Example 4.2, we also present an unstable maxima concomitant distribution F for which X and Y are dependent.
That way, if X and Y are independent then F is an unstable maxima concomitant distribution. If they are dependent and,

in addition, their joint distribution satisfies (2.2) for some c , then F is a c-stable maxima concomitant distribution.
We have just introduced a new notation— the stablemaxima concomitant distribution. In our work, we analyze the limit

behavior of Kn(a, b1, b2) and Kn in these terms.

3. Distributional and moment results

Lemma 3.1. The distribution of Kn(a, b1, b2) can be given in two forms

P{Kn(a, b1, b2) = k} = n
(
n− 1
k

)∫
R2
Pk1(H(x)− P1)

n−k−1F(dx, dy) (k = 0, . . . , n− 1), (3.1)

P{Kn(a, b1, b2) ≥ k} = n(n− 1)
(
n− 2
k− 1

)∫
R2

∫ x+a

x

∫ y+b1

y−b2
Pk2(H(u)− P2)

n−k−1F(du, dv)F(dx, dy)

(k = 1, . . . , n− 1), (3.2)

where

P1 = P1(x, a, y, b1, b2) = F(x, y+ b2)− F(x, y− b1)− F(x− a, y+ b2)+ F(x− a, y− b1)

and

P2 = F(u, v + b2)− F(u, v − b1)− F(x, v + b2)+ F(x, v − b1)

are the probabilities that Z belongs to the rectangles (x− a, x)× (y− b1, y+ b2) and (x, u)× (v − b1, v + b2), respectively.
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Proof. We prove only equality (3.2), which is not so obvious.
We suppose that one variable is observed at the point (x, y), and another one, which is Mn, at the point (u, v), where

x < u < x + a and y − b2 < v < y + b1. The event {Kn(a, b1, b2) ≥ k} now happens if k − 1 among the rest n − 2
observations are registered in the rectangle (x, u)× (v − b1, v + b2). �

Corollary 3.1. The distribution of Kn can be derived from (3.1):

P{Kn = k} = n
(
n− 1
k

)∫
R2
F n−k−1(x, y)(H(x)− F(x, y))kF(dx, dy) (k = 0, . . . , n− 1). (3.3)

It follows from (3.1)–(3.3) that

EKn(a, b1, b2) = n(n− 1)
∫

R2
P1(H(x)− P1)n−2F(dx, dy),

EKn(a, b1, b2) = n(n− 1)
∫

R2

∫ x+a

x
Hn−2(u) [F(du, y+ b1)− F(du, y− b2)] F(dx, dy) (3.4)

and

EKn = n(n− 1)
∫

R2
(H(x)− F(x, y))Hn−2(x)F(dx, dy). (3.5)

4. Limit results when the support is bounded from the right

In this section, we suppose that rH <∞. If F is a c-stablemaxima concomitant distribution, it is natural to expect that for
rather large n the random pointMn locates near the fixed point (rH , c). Since that n, and further as n increases, the number
of observations registered in the rectangle nearMn can be approximated by the Bernoulli lawwith probability of success P1.
Particular forms of limit results for Kn(a, b1, b2) and Kn are given below.

Theorem 4.1. Let F(x, y) be a c-stable maxima concomitant distribution. Then

EKn(a, b1, b2)
n

→ P1(rF , a, c, b1, b2) (n→∞)

and
Kn(a, b1, b2)

n
→p P1(rF , a, c, b1, b2) (n→∞).

Proof. We prove only the first result of this theorem for the case when c = rG. The second result can be obtained similarly
by analyzing the probability generating function of Kn(a, b1, b2).
By (3.4),

EKn(a, b1, b2)
n

= I1 − I2,

where

Ii = (n− 1)
∫

R2

∫ x+a

x
Hn−2(u)F(du, y+ (−1)i−1bi)F(dx, dy) (i = 1, 2).

We have

I1 = o(1)+ (n− 1)
∫

R

∫ rG

rG−b1

∫ x+a

x
Hn−2(u)dF(u)F(dx, dy)

= o(1)+
∫

R

∫ rG

rG−b1

[
Hn−1(x+ a)− Hn−1(x)

]
F(dx, dy)

= o(1)+
∫ rH

rH−a

[
Hn−1(x+ a)− Hn−1(x)

]
dH(x)−

∫ rH

rH−a

[
Hn−1(x+ a)− Hn−1(x)

]
F(dx, rG − b1).

Then ∫ rH

rH−a

[
Hn−1(x+ a)− Hn−1(x)

]
dF(x) = 1− H(rH − a)+ o(1).



I. Bairamov, A. Stepanov / Statistics and Probability Letters 80 (2010) 196–205 199

By (2.2),∫ rH

rH−a

[
Hn−1(x+ a)− Hn−1(x)

]
F(dx, rG − b1) = G(rG − b1)− F(rH − a, rG − b1)+ o(1).

Applying similar argument, it is possible to show that

I2 = o(1) (n→∞). �

The following corollary can be easily obtained from Theorem 4.1.

Corollary 4.1. Let F be a c-stable concomitant distribution. Then

EKn
n
→ 1− G(c) and

Kn
n

p
→ 1− G(c) (n→∞).

The above limit results are illustrated by examples.

Example 4.1. Suppose F is uniform in the square determined by the lines:

y+ x = 1, y+ x = −1,
y− x = 1, y− x = −1.

For y ≥ 0 this distribution has the form

F(x, y) =



(1+ x)2

2
y > x+ 1,−1 < x ≤ 0,

1+ 2xy+ (1+ x)2 − (1− y)2

4
y < x+ 1,−1 < x ≤ 0,

3+ 2xy− (1− x)2 − (1− y)2

4
y < 1− x, 0 < x ≤ 1,

3+ 2xy− (1− x)2 − (1− y)2 − (x+ y− 1)2

4
y > 1− x, 0 < x ≤ 1,

where the marginal distribution is

H(x) =


(1+ x)2

2
−1 < x ≤ 0,

1−
(1− x)2

2
0 < x ≤ 1

and the density distribution is

F(dx, y) =



(1+ x)dx y > x+ 1,−1 < x ≤ 0,
y+ 1+ x
2

dx y < x+ 1,−1 < x ≤ 0,

y+ 1− x
2

dx y < 1− x, 0 < x ≤ 1,

(1− x)dx y > 1− x, 0 < x ≤ 1.

Then for any ε > 0

n
∫ 1

−1
Hn−1(x)F(dx, y) = n

∫ 1−ε

−1
Hn−1(x)F(dx, y)+ n

∫ 1

1−ε
Hn−1(x)F(dx, y)

= o(1)+ n
∫ 1

1−ε

(
1−

(1− x)2

2

)n−1
(1− x)dx

= o(1)+ 1−
(
1− ε2/2

)n
.

It follows that

n
∫ 1

−1
Hn−1(x)F(dx, ε)→ 1.
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Analyzing F when y < 0, it is possible to show that for any ε > 0

n
∫ 1

−1
Hn−1(x)F(dx,−ε)→ 0.

That way, condition (2.2) holds with c = 0 and F is a 0-stablemaxima concomitant distribution. It follows from Theorem 4.1
that for 0 < b1 < b2 < a < 1 (we do not consider other possible choices of a, b1, b2)

EKn(a, b1, b2)
n

→
b1(2a− b1)+ b2(2a− b2)

4
and

Kn(a, b1, b2)
n

→p
b1(2a− b1)+ b2(2a− b2)

4
.

It follows from Corollary 4.1 that

EKn
n
→
1
2
,
Kn
n

p
→
1
2
.

Example 4.2. Let

F(x, y) =
{
x if x < y,
y+ y log(x/y) if x ≥ y (0 < x < 1, 0 < y < 1)

with marginal distribution H(x) = x (0 < x < 1) and density distribution

F(dx, y) =

{
dx if x < y,
y
x
dx if x ≥ y.

Then

n
∫

R
Hn−1(x) [F(dx, c + ε)− F(dx, c − ε)]→ 2ε

for any c ∈ [0, 1]. That way, F is an unstable maxima concomitant distribution and Theorem 4.1 cannot be applied here.

5. Limit results in the case of unbounded support

In this section, we suppose that rH = ∞. In Section 5.1 we discuss the asymptotic behavior of Kn. Limiting properties of
Kn(a, b1, b2) are studied in Section 5.2. Some examples are proposed in Section 5.3. The basic results of our paper presented
in the end of Section 5.2.

5.1. Limit results for Kn

Let F be a c-stable maxima concomitant distribution. Then, the random point Mn moves to (∞, c) as n increases. The
number of observations registered in the upper semi-plane defined by the line y = c can be approximated by the Bernoulli
law with probability of success 1− G(c). Particular forms of limit laws for Kn are given below.

Theorem 5.1. Let F be c-stable maxima concomitant distribution, where c < rG. Then

1.
EKn
n
→ 1− G(c),

2.
Kn
n

p
→ 1− G(c),

3.
Kn − n(1− G(c))
√
nG(c)(1− G(c))

d
→ ξN(0,1),

where ξN(0,1) is a random variable having the standard normal law.
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Proof. We start with showing the truth of the second and third results of this theorem. By (2.2), the probability generating
function of Kn can be written as

EsKn = n
∫

R2
(sH(x)+ (1− s)F(x, y))n−1 F(dx, dy)

= n
∫

R

∫ c+ε

c−ε
(sH(x)+ (1− s)F(x, y))n−1 F(dx, dy)+ o(1).

Choose z ∈ (c − ε, c + ε) such that

n
∫

R

∫ c+ε

c−ε
(sH(x)+ (1− s)F(x, y))n−1 F(dx, dy) = n

∫
R

∫ c+ε

c−ε
(sH(x)+ (1− s)F(x, z))n−1 F(dx, dy)

Then, for any fixed x0,

EsKn = n
∫
x0

(
s+ (1− s)

F(x, z)
H(x)

)n−1
Hn−1(x)[F(dx, c + ε)− F(dx, c − ε)] + o(1).

Choose δ1, δ2 > 0 such that

n
∫
x0
Hn−1(x)[F(dx, c + ε)− F(dx, c − ε)] < 1+ δ1 (n > N)

and

F(x, z)/H(x) < G(z)+ δ2 (x > x0).

Then

EsKn < [s+ (1− s)(G(z)+ δ2)]n−1 (1+ δ1)+ o(1) (n > N).

Similarly, the probability generating function of Kn can be estimated from the below. By the continuity of G,

EsKn = [s+ (1− s)G(c)]n−1 + o(1). (5.1)

The second result of this theorem is now obtained by choosing s = sn = s1/n.
The form of the central limit theorem for Kn follows from the binomial component in (5.1). See also pages 186, 187 in

Pakes and Steutel (1997).
Since the bounded convergence in probability implies the convergence of the moments, the first result of Theorem 5.1

also follows. �

5.2. Limit results for Kn(a, b1, b2)

The following limit

lim
x→∞

1− H(x+ a)
1− H(x)

= β(a) ∈ [0, 1], (5.2)

proposed in Pakes and Steutel (1997), is used for distribution tail classification in the univariate theory of near-maxima. If
the limit in (5.2) exists, the distribution tail 1−H(x) is classified as ‘‘thin’’ ifβ(a) = 0, ‘‘medium’’ if 0 < β(a) < 1 and ‘‘thick’’
if β(a) = 1. Based on this classifications different limit laws are obtained for the number of univariate near-maxima in the
case of unbounded support. In particular, it is shown that if the tail 1− H(x) is ‘‘medium’’, then the limiting distribution for
the number of near-maxima is geometric.
In the bivariate case similar results hold true.

Theorem 5.2. Let F be a c-stable maxima concomitant distribution and c ≤ rG < ∞. Let the limit in (5.2) exist and β(a) > 0.
Suppose, also, the limit

lim
x→∞

G(y)− F(x, y)
1− H(x)

(5.3)

exists for all y. Then

Kn(a, b1, b2)
d
→ Geo(β(a)),

where Geo(p) is a geometrically distributed random variable with parameter p.
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Proof. Let us consider the probability generating function of Kn(a, b1, b2)

EsKn(a,b1,b2) = n
∫

R2
[H(x)− (1− s)P1(x, a, y, b1, b2)]n−1 F(dx, dy).

For further analysis of EsKn(a,b1,b2) we need the following auxiliary proposition, which proof is postponed till Appendix.

Proposition 5.1. Let F be a c-stable maxima concomitant distribution and c ≤ rG < ∞. Let the limits in (5.2) and (5.3) exist
and β(a) > 0. Then

lim
x→∞

P1(x, a, y, b1, b2)
1− H(x)

= 0 (y < c − b2 or y > c + b1)

and

lim
x→∞

P1(x, a, y, b1, b2)
1− H(x)

=
1− β(a)
β(a)

(c − b2 < y < c + b1),

where b1 = 0 if c = rG.

By Proposition 5.1, we can choose ε1, ε2 > 0 such that

P1(x, a, y, b1, b2)
1− H(x)

< ε1 (y < c − b2 or y > c + b1, x > x0)

and
P1(x, a, y, b1, b2)
1− H(x)

<
1− β(a)+ ε2
β(a)− ε2

(c − b2 < y < c + b1, x > x0).

Then

EsKn(a,b1,b2) > n
∫
∞

x0

∫ c−b2

−∞

[H(x)− (1− s)ε1(1− H(x))]n−1 F(dx, dy)

+ n
∫
∞

x0

∫
∞

c+b1

[H(x)− (1− s)ε1(1− H(x))]n−1 F(dx, dy)

+ n
∫
∞

x0

∫ c+b1

c−b2

[
H(x)− (1− s)

1− β(a)− ε2
β(a)+ ε − ε2

(1− H(x))
]n−1

F(dx, dy)+ o(1),

where in the case when c = rG we have only the first and the third integral. It is possible to show that the first two integrals
on the right-hand side of the last inequality tend to zero and the third integral tends to

β(a)+ ε
1− s(1− β(a)− ε)

.

In the same way EsKn(a,b1,b2) can be estimated from the above. We conclude

lim
n→∞

EsKn(a,b1,b2) =
β(a)

1− s(1− β(a))
.

By the form of the probability generating function of Kn(a, b1, b2), the result follows. �

Comment 5.1. It is strange, at first look, that the limiting distribution of Kn(a, b1, b2) is free of b1 and b2. We may explain it like
this. When F is a c-stable maxima concomitant distribution and x is large, the probability mass is concentrated basically near the
line y = c and Y (n)max is close to c. The height of the rectangle

∏
= (X (n)max − a, X

(n)
max) × (c − b1, c + b2) is then unimportant for

counting the sample observations registered in
∏
, because these observations (when x is great) are mainly located near the line

y = c.

With little modification in the proof of Theorem 5.2, one can obtain the following theorem.

Theorem 5.3. Let F be a large maxima concomitant distribution and rG = ∞. Let the limit in (5.2) exist and β(a) > 0. Then

Kn(a, b1, b2)
p
→ 0. (5.4)

Remark 5.1. We list the conditions which guarantee the convergence in (5.4).
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1. From Theorem 5.3, it follows that if F is a large maxima concomitant distribution, rG = ∞ and β(a) > 0, then (5.4) holds
true.

2. From Theorem 5.2 it follows that if F is a c-stable maxima concomitant distribution (for some c , where c ≤ rG <∞) and
β(a) = 1 then (5.4) holds true. We can say, alternatively here, that for all y

lim
x→∞

P1(x, a, y, b1, b2)
1− H(x)

= 0.

In Theorem 5.4, conditions for strong convergence of Kn(a, b1, b2) are found.

Theorem 5.4. Let∫
R2

P1
(1− H(x))2

F(dx, dy) <∞. (5.5)

Then Kn(a, b1, b2)
a.s.
→ 0.

Proof. Indeed,
∞∑
n=2

P{Kn(a, b1, b2) > 0} =
∞∑
n=2

[
1−

∫
R2

∫
(H(x)− P1)n−1F(dx, dy)

]
=

∞∑
n=2

∫
R2

[
nHn−1(x)− (H(x)− P1)n−1

]
F(dx, dy)

=

∫
R2

P1
(1− H(x))(1− H(x)+ P1)

F(dx, dy) <
∫

R2

P1
(1− H(x))2

F(dx, dy).

By Borel–Cantelli lemma, the result follows. �

Remark 5.2. Observe that Theorem 5.4 implies that if F is large maxima concomitant distribution, c-stable maxima
concomitant distribution or even unstablemaxima concomitant distribution and condition (5.5) holds, then Kn(a, b1, b2)

a.s.
→

0 (
p
→).

Remark 5.3. In the univariate case the condition for strong convergence of the number of near-maxima, the bivariate
analogue of which is Kn(a,∞,∞), is proposed by Li (1999). If∫

R

H(x)− H(x− a)
(1− H(x))2

dF(x) <∞, (5.6)

then Kn(a,∞,∞)
a.s.
→ 0. Observe that if Li’s condition holds, then (5.5) also holds.

5.3. Examples

Example 5.1. Let

F(x, y) =
∫ x

0

∫ y

0

1
u
e−u−v/udvdu (x > 0, y > 0)

with marginal distribution H(x) = 1− e−x and density-distribution function F(dx, y) = e−x(1− e−y/x)dx. For small ε > 0
and fixed y choose x0 such that 1− e−y/x < ε (x > x0). Then

P{Y (n)max ≤ y} = o(1)+ n
∫
∞

x0
Hn−1(x)F(dx, y)

= o(1)+ n
∫
∞

x0
(1− e−x)n−1e−x(1− e−y/x)dx < o(1)+ ε.

This means that F is a large maxima concomitant distribution and Mn
p
→ (∞,∞). The limit in (5.2) exists and β(a) > 0.

By Theorem 5.3, Kn(a, b1, b2)
p
→ 0. However,

P1
(1− H(x))2

f (x, y) ∼
(ea − 1)e2k

x
(x→∞, y = kx),

where f (x, y) is the joint density. This indicates that condition (5.5) does not hold and Theorem 5.4 cannot be applied here.
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Example 5.2. Let

F(x, y) = 1− e−x −
1− e−x(y+1)

y+ 1
(x > 0, y > 0)

with marginal distributions H(x) = 1 − e−x (x > 0) and G(y) = 1 − 1
y+1 (y > 0). Condition (2.2) holds here with c = 0,

i.e. F is a 0-stable maxima concomitant distribution and Mn
p
→ (∞, 0). The limits in (5.2) and (5.3) exist and β(a) = e−a.

By Theorem 5.2 we obtain the convergence in distribution Kn(a, 0, b2)
d
→ Geo(e−a).

Example 5.3. Let

F(x, y) = 1− e−y −
1− e−y(x+1)

x+ 1
(x > 0, y > 0)

with marginal distributions

G(y) = 1− e−y (y > 0) and H(x) = 1−
1
x+ 1

(x > 0).

Condition (2.2) holds here with c = 0, i.e. F is a 0-stable maxima concomitant distribution and Mn
p
→ (∞, 0). The limits

in (5.2) and (5.3) exist and β(a) = 1. By Theorem 5.2, Kn(a, 0, b2)
p
→ 0. Condition (5.6) holds true, and by Remark 5.3,

Kn(a, 0, b2)
a.s.
→ 0.
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Appendix

Proof of Proposition 5.1. We present the proof for the case when c < rG. If c = rG the proof utilizes the same argument.
Let us recall that for a c-stable maxima concomitant distribution F

n
∫

R
Hn−1(x)F(dx, y)→ 1 (y > c) (A.1)

and

n
∫

R
Hn−1(x)F(dx, y)→ 0 (y < c). (A.2)

Observe that for any continuous F ,

n
∫

R
F(x, y)Hn−1(x)dF(x)→ G(y). (A.3)

Define continuous function δ by

δ(x, y) = G(y)− F(x, y).

The function δ is decreasing in x and for any fixed y

δ(−∞, y) = G(y), δ(∞, y) = 0.

It follows from (A.1)–(A.3) that if F is a c-stable maxima concomitant distribution, then

n(n− 1)
∫

R
δ(x, y)Hn−2(x)dF(x)→ 1 (y > c, n→∞) (A.4)

and

n(n− 1)
∫

R
δ(x, y)Hn−2(x)dF(x)→ 0 (y < c, n→∞). (A.5)

The convergency in (A.4) and (A.5) allow us to compare the functions δ and 1 − H(x) at infinity. If F is a c-stable maxima
concomitant distribution, then by the existence of the limit in (5.3),

δ(x, y)
1− H(x)

→ 1 (x→∞, y > c)
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and
δ(x, y)
1− H(x)

→ 0 (x→∞, y < c).

Finally, we get

P1(x, a, y, b1, b2)
1− H(x)

=
δ(x− a, y+ b2)
1− H(x− a)

·
1− H(x− a)
1− H(x)

−
δ(x, y+ b2)
1− H(x)

+
δ(x, y− b1)
1− H(x)

−
δ(x− a, y− b1)
1− H(x− a)

·
1− H(x− a)
1− H(x)

→ 1 ·
1
β(a)
− 1+ 0− 0 ·

1
β(a)

. �
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